Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (2): 191-208.doi: 10.11938/cjmr20233079
• Review Articles • Previous Articles Next Articles
YANG Yu*(), CHEN Bo, WU Liubin, LIN Enping, HUANG Yuqing, CHEN Zhong
Received:
2023-08-29
Published:
2024-06-05
Online:
2023-10-10
Contact:
*Tel: +86 18250756791, E-mail: yuyang15@xmu.edu.cn.
CLC Number:
YANG Yu, CHEN Bo, WU Liubin, LIN Enping, HUANG Yuqing, CHEN Zhong. Spectrum Reconstruction for Laplace NMR: From Handcraft Regularization to Deep Learning[J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 191-208.
Table 2
Regularization parameter settings of classic methods on three samples, and the computation efficiency comparison with DRECT
样品 | LRSpILT参数设置 | CoMeF参数设置 | 单次运行时间(单位/s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
λ1 | λ2 | 迭代次数 | β | 成分数 | 迭代次数 | LRSpILT | CoMeF | DRECT | |||
QGC | 0.005 | 0.0005 | 1500 | 0.1 | 3 | 30000 | 106 | 562 | 5 | ||
GSP | 0.01 | 0.1 | 1500 | 0.8 | 3 | 30000 | 131 | 152 | 3 | ||
M6 | 0.7 | 33 | 1500 | 0.1 | 10 | 100000 | 123 | 357 | 3 |
[1] | TELKKI V V. Hyperpolarized Laplace NMR[J]. Magn Reson Chem, 2018, 56(7): 619-632. |
[2] |
CHANDRA K, SCHLAGNITWEIT J, WOHLSCHLAGER C, et al. Spin-noise-detected two-dimensional Fourier-transform NMR spectroscopy[J]. J Phys Chem Lett, 2013, 4(22): 3853-3856.
pmid: 24294412 |
[3] |
KING J N, LEE V J, AHOLA S, et al. Ultrafast multidimensional Laplace NMR using a single-sided magnet[J]. Angew Chem Int Ed, 2016, 55(16): 5040-5043.
doi: 10.1002/anie.201511859 pmid: 26960011 |
[4] | MANKINEN O, ZHIVONIKO V V, SELENT A, et al. Ultrafast diffusion exchange nuclear magnetic resonance[J]. Nat Commun, 2020, 11(1): 3251. |
[5] | MORRIS K F, JOHNSON C S JR. Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy[J]. J Am Chem Soc, 1992, 114(8): 3139-3141. |
[6] | PRICE W S. NMR studies of translational motion: Principles and applications[M]. Cambridge University Press, 2009. |
[7] | CALLAGHAN P T. Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR[M]. Oxford University Press, 2011. |
[8] | LV J, SHAN L, TU G Z. The integrated DOSY acquisition/processing module for Topspin NMR software[J]. Chinese J Magn Reson, 2008, 25(1): 133-143. |
吕娟, 单璐, 涂光忠. TopSpin核磁共振软件中集成的DOSY采集/处理模块DOSYm-(TM)[J]. 波谱学杂志, 2008, 25(1): 133-143. | |
[9] | MA H, PEDERSEN C M, ZHAO Q, et al. Utilizing 3D DOSY NMR in the characterization of organic compounds in coal chemical wastewater[J]. Magn Reson Lett, 2022, 2(2): 69-79. |
[10] | WANG L, AMELUNG W, WILLBOLD S. Diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR): A novel tool for identification of phosphorus compounds in soil extracts[J]. Environ Sci Technol, 2017, 51(22): 13256-13264. |
[11] | BUSSE F, REHORN C, KUPPERS M, et al. NMR relaxometry of oil paint binders[J]. Magn Reson Chem, 2020, 58(9): 830-839. |
[12] | SONG Y-Q, KAUSIK R. NMR application in unconventional shale reservoirs - A new porous media research frontier[J]. Prog Nucl Magn Reson Spectrosc, 2019, 112-113: 17-33. |
[13] | MENG K, WANG S J, XUE Z A, et al. Quantitative evaluation of shale pore structure using nuclear magnetic resonance data[J]. Chinese J Magn Reson, 2021, 38(2): 215-226. |
孟昆, 王胜建, 薛宗安, 等. 利用核磁共振资料定量评价页岩孔隙结构[J]. 波谱学杂志, 2021, 38(2): 215-226.
doi: 10.11938/cjmr20202856 |
|
[14] | CHAO F A, BYRD R A. Protein dynamics revealed by NMR relaxation methods[J]. Emerging topics in life sciences, 2020, 2(1): 93-105. |
[15] | STEJSKAL E O, TANNER J E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient[J]. J Chem Phys, 1965, 42(1): 288-292. |
[16] | PRANG M, SONG Y Q. Understanding NMR T2spectral uncertainty[J]. J Magn Reson, 2010, 204(1): 118-123. |
[17] | BARJAT H, MORRIS G A, SMART S, et al. High-resolution diffusion-ordered 2D spectroscopy (HR-DOSY) - a new tool for the analysis of complex mixtures[J]. J Magn Reson, Series B, 1995, 108(2): 170-172. |
[18] | MORRIS K F, JOHNSON C S. Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy[J]. J Am Chem Soc, 1993, 115(10): 4291-4299. |
[19] | NILSSON M, CONNELL M A, DAVIS A L, et al. Biexponential fitting of diffusion-ordered NMR data: Practicalities and limitations[J]. Anal Chem, 2006, 78(9): 3040-3045. |
[20] | LAGARIAS J C, REEDS J A, WRIGHT M H, et al. Convergence properties of the Nelder-Mead simplex method in low dimensions[J]. SIAM J Optim, 1998, 9(1): 112-147. |
[21] | MORE J J. The Levenberg-Marquardt algorithm: Implementation and theory[C]// Numerical Analysis, 1978 Berlin, Heidelberg: 105-116. |
[22] | LAWSON C L, HANSON R J. Solving least squares problems[M]. Society for Industrial and Applied Mathematics, 1995. |
[23] | ANTALEK B, WINDIG W. Generalized rank annihilation method applied to a single multicomponent pulsed gradient spin echo NMR data set[J]. J Am Chem Soc, 1996, 118(42): 10331-10332. |
[24] | WINDIG W, ANTALEK B. Direct exponential curve resolution algorithm (DECRA): A novel application of the generalized rank annihilation method for a single spectral mixture data set with exponentially decaying contribution profiles[J]. Chemometr Intell Lab Syst, 1997, 37(2): 241-254. |
[25] | WINDIG W, ANTALEK B. Resolving nuclear magnetic resonance data of complex mixtures by three-way methods: Examples of chemical solutions and the human brain[J]. Chemometr Intell Lab Syst, 1999, 46(2): 207-219. |
[26] | ANTALEK B. Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results[J]. Concepts Magn Reson, 2002, 14(4): 225-258. |
[27] | STILBS P, PAULSEN K. Global least-squares analysis of large, correlated spectral data sets and application to chemical kinetics and time-resolved fluorescence[J]. Rev Sci Instrum, 1996, 67(12): 4380-4386. |
[28] | STILBS P, PAULSEN K, GRIFFITHS P C. Global least-squares analysis of large, correlated spectral data sets: Application to component-resolved FT-PGSE NMR spectroscopy[J]. J Phys Chem, 1996, 100(20): 8180-8189. |
[29] | GRIFFITHS P C, STILBS P, PAULSEN K, et al. FT-PGSE NMR study of mixed micellization of an anionic and a sugar-based nonionic surfactant[J]. J Phys Chem B, 1997, 101(6): 915-918. |
[30] |
NILSSON M, MORRIS G A. Speedy component resolution: An improved tool for processing diffusion-ordered spectroscopy data[J]. Anal Chem, 2008, 80(10): 3777-3782.
doi: 10.1021/ac7025833 pmid: 18407669 |
[31] |
VAN CORKOM L C M, HANCEWICZ T M. Analysis of DOSY and GPC-NMR experiments on polymers by multivariate curve resolution[J]. J Magn Reson, 1998, 130(1): 125-130.
pmid: 9469907 |
[32] | COLBOURNE A A, MEIER S, MORRIS G A, et al. Unmixing the NMR spectra of similar species-vive la différence[J]. Chem Comm, 2013, 49(89): 10510. |
[33] | PROVENCHER S W. A constrained regularization method for inverting data represented by linear algebraic or integral equations[J]. Comput Phys Commun, 1982, 27(3): 213-227. |
[34] | BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J Imaging Sci, 2009, 2(1): 183-202. |
[35] |
URBANCZYK M, BERNIN D, KOZMINSKI W, et al. Iterative thresholding algorithm for multiexponential decay applied to PGSE NMR data[J]. Anal Chem, 2013, 85(3): 1828-1833.
doi: 10.1021/ac3032004 pmid: 23297715 |
[36] | BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Found Trends Mach Learn, 2010, 3(1): 1-122. |
[37] | GIAMPOURAS P V, THEMELIS K E, RONTOGIANNIS A A, et al. Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing[J]. IEEE Trans Geosci Remote Sens, 2016, 54(8): 4775-4789. |
[38] | LIN E, CHEN B, NI Z, et al. A generally regularized inversion for NMR applications and beyond[J]. IEEE Trans on Instrum Meas, 2023, 72: 1-11. |
[39] | KIM S-J, KOH K, LUSTIG M, et al. An interior-point method for large-scale L1-regularized least squares[J]. IEEE J Sel Top Signal Process, 2007, 1(4): 606-617. |
[40] | LIN E, TELKKI V-V, LIN X, et al. High-resolution reconstruction for multidimensional Laplace NMR[J]. J Phys Chem Lett, 2021, 12(21): 5085-5090. |
[41] | DELSUC M A, MALLIAVIN T E. Maximum entropy processing of DOSY NMR spectra[J]. Anal Chem, 1998, 70(10): 2146-2148. |
[42] |
DAY I J. On the inversion of diffusion NMR data: Tikhonov regularization and optimal choice of the regularization parameter[J]. J Magn Reson, 2011, 211(2): 178-185.
doi: 10.1016/j.jmr.2011.05.014 pmid: 21683632 |
[43] |
YUAN B, DING Y, KAMAL G M, et al. Reconstructing diffusion ordered NMR spectroscopy by simultaneous inversion of Laplace transform[J]. J Magn Reson, 2017, 278: 1-7.
doi: S1090-7807(17)30066-6 pmid: 28301804 |
[44] |
LIN E, YANG Y, HUANG Y, et al. High-resolution reconstruction for diffusion-ordered NMR spectroscopy[J]. Anal Chem, 2020, 92(1): 634-639.
doi: 10.1021/acs.analchem.9b03865 pmid: 31769652 |
[45] |
LIN E, ZOU N, HUANG Y, et al. Neural network method for diffusion-ordered NMR spectroscopy[J]. Anal Chem, 2022, 94(6): 2699-2705.
doi: 10.1021/acs.analchem.1c03883 pmid: 35107988 |
[46] | YANG Y, ZOU N, LIN E, et al. A neural network method for nonconvex optimization and its application on parameter retrieval[J]. IEEE Trans Signal Process, 2021, 69: 3383-3398. |
[47] | CASTANAR L, POGGETTO G D, COLBOURNE A A, et al. The GNAT: A new tool for processing NMR data[J]. Magn Reson Chem, 2018, 56(6): 546-558. |
[48] |
NILSSON M. The DOSY toolbox: A new tool for processing PFG NMR diffusion data[J]. J Magn Reson, 2009, 200(2): 296-302.
doi: 10.1016/j.jmr.2009.07.022 pmid: 19666235 |
[49] | DOSY Toolbox, Manchester NMR methodology group[EB/OL]. https://www.nmr.chemistry.manchester.ac.uk/?q=node/340. |
[50] | QU X, HUANG Y, LU H, et al. Accelerated nuclear magnetic resonance spectroscopy with deep learning[J]. Angew Chem Int Ed, 2020, 132(26): 10383-10386. |
[51] |
LIU Q, YANG Q, CHENG H, et al. Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors[J]. Magn Reson Med, 2020, 83(1): 322-336.
doi: 10.1002/mrm.27921 pmid: 31429993 |
[52] | PARASRAM T, DAOUD R, XIAO D. T2 analysis using artificial neural networks[J]. J Magn Reson, 2021, 325: 106930. |
[53] | LUO G, XIAO L, LUO S, et al. A study on multi-exponential inversion of nuclear magnetic resonance relaxation data using deep learning[J]. J Magn Reson, 2023, 346: 107358. |
[54] | CHEN B, WU L, CUI X, et al. High-quality reconstruction for Laplace NMR based on deep learning[J]. Analy Chem, 2023, 95(31): 11596-11602. |
[55] | BUTLER J P, REEDS J A, DAWSON S V. Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing[J]. SIAM J Numer Anal, 1981, 18(3): 381-397. |
[56] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Adv Neural Inf Process Syst, 2017, 30: 5998-6008. |
[57] | CHEN J J, HURLIMANN M, PAULSEN J, et al. Dispersion of T1 and T2 nuclear magnetic resonance relaxation in crude oils[J]. Chem Phys Chem, 2014, 15(13): 2676-2681. |
[58] | SONG Y-Q, XIAO L. Optimization of multidimensional MR data acquisition for relaxation and diffusion[J]. NMR Biomed, 2020, 33(12): e4238. |
[59] | ZHANG R, WANG W, GAO Y, et al. Sensitivity analysis of T2-T1 2D NMR measurement parameters in shale oil reservoirs[J]. Chinese J Magn Reson, 2023, 40(2): 122-135. |
张融, 王伟, 高怡, 等. 页岩油储层T2-T1二维核磁共振测量参数敏感性分析[J]. 波谱学杂志, 2023, 40(2): 122-135.
doi: 10.11938/cjmr20223025 |
|
[60] | KENDALL A, GAL Y. What uncertainties do we need in Bayesian deep learning for computer vision?[C]// Adv Neural Inf Process Syst, 2017, 30: 5580-5590. |
[61] | GLANG F, DESHMANE A, PROKUDIN S, et al. DeepCEST 3 T: Robust MRI parameter determination and uncertainty quantification with neural networks-application to CEST imaging of the human brain at 3 T[J]. Magn Reson Med, 2020, 84(1): 450-466. |
[1] | Dai Junlong, He Cong, Wu Jie, Bian Yun. Pancreatic Cystic Neoplasms Segmentation Network Combining Dual Decoding and Global Attention Upsampling Modules [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 151-161. |
[2] | CHANG Bo, SUN Haoyun, GAO Qingyu, WANG Lijia. Research Progress on Cardiac Segmentation in Different Modal Medical Images by Traditional Methods and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 224-244. |
[3] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[4] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[5] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
[6] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[7] | LU Qiqi, LIAN Zifeng, LI Jialong, SI Wenbin, MAI Zhaohua, FENG Yanqiu. Magnetic Resonance R2* Parameter Mapping of Liver Based on Self-supervised Deep Neural Network [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269. |
[8] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[9] | TIAN Hui, WU Jie, BIAN Yun, ZHANG Zhiwei, SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[10] | HUANG Min,LI Siyi,CHEN Junbo,ZHOU Dao. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219. |
[11] | QIAN Chengyi,WANG Yuanjun. Research Progress on Imaging Classification of Alzheimer’s Disease Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 220-238. |
[12] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
[13] | Meng CHEN, Chen GENG, Yu-xin LI, Dao-ying GENG, Yi-fang BAO, Ya-kang DAI. Automatic Detection for Cerebral Aneurysms in TOF-MRA Images Based on Fuzzy Label and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 267-277. |
[14] | Ying-shan WANG, Ao-qi DENG, Jin-ling MAO, Zhong-qi ZHU, Jie SHI, Guang YANG, Wei-wei MA, Qing LU, Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315. |
[15] | Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE. Applications of Generative Adversarial Networks in Medical Image Translation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 366-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||