Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (4): 454-468.doi: 10.11938/cjmr20243110
• Articles • Previous Articles Next Articles
NING Xinzhou1, HUANG Zhen1, CHEN Xiqu1, LIU Xinjie2,3, CHEN Gang2,3, ZHANG Zhi2,3, BAO Qingjia2,3,*(), LIU Chaoyang2,3,4,#()
Received:
2024-04-16
Published:
2024-12-05
Online:
2024-05-16
Contact:
* Tel: 027-87199686, E-mail: CLC Number:
NING Xinzhou, HUANG Zhen, CHEN Xiqu, LIU Xinjie, CHEN Gang, ZHANG Zhi, BAO Qingjia, LIU Chaoyang. Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging[J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 454-468.
Table 1
Ablation experiments under the influence of different factors
方法 | PSNR/dB | SSIM | FLOPS | 模型参数/MB |
---|---|---|---|---|
传统迭代重建 | 31.08 | 0.8928 | - | - |
U-Net重建 | 38.58 | 0.9812 | 5.48 | 5.3 |
Transformer (C=12) | 38.85 | 0.9801 | 4.42 | 3.0 |
Transformer (C=24) | 45.22 | 0.9928 | 16.14 | 11.6 |
Transformer (C=48) | 53.31 | 0.9983 | 61.48 | 46.2 |
Transformer (T=1) | 42.34 | 0.9877 | 8.71 | 6.8 |
Transformer (T=2) | 45.22 | 0.9928 | 16.14 | 11.6 |
Transformer (T=3) | 45.41 | 0.9928 | 23.57 | 16.4 |
Transformer (Without GDL) | 42.83 | 0.9901 | 16.14 | 11.6 |
Transformer (With GDL) | 45.22 | 0.9928 | 16.14 | 11.6 |
[1] | EMAM M M, HOUSSEIN E H, GHONIEM R M. A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images[J]. Comput Biol Med, 2023, 152: 106404. |
[2] |
WALTER S S, FRITZ B, KIJOWSKI R, et al. 2D versus 3D MRI of osteoarthritis in clinical practice and research[J]. Skeletal Radiol, 2023, 52(11): 2211-2224.
doi: 10.1007/s00256-023-04309-4 pmid: 36907953 |
[3] |
TSAO J. Ultrafast imaging: principles, pitfalls, solutions, and applications[J]. J Magn Reson Imaging, 2010, 32(2): 252-266.
doi: 10.1002/jmri.22239 pmid: 20677249 |
[4] | GIL R, FERNANDES F F, SHEMESH N. Neuroplasticity-driven timing modulations revealed by ultrafast functional magnetic resonance imaging[J]. NeuroImage, 2021, 225: 117446. |
[5] | HIRSCH F W, FRAHM J, SORGE I, et al. Real-time magnetic resonance imaging in pediatric radiology—new approach to movement and moving children[J]. Pediatr Radiol, 2021, 51: 840-846. |
[6] | MILON A, FLAMENT V, GUENICHE Y, et al. How to optimize breast MRI protocol? The value of combined analysis of ultrafast and diffusion-weighted MRI sequences[J]. Diagn Interv Imaging, 2023, 104(6): 284-291. |
[7] | LIAO C, CAO X, CHO J, et al. Highly efficient MRI through multi-shot echo planar imaging[C]// Wavelets and Sparsity XVIII, 2019, 11138: 353-365. |
[8] |
DUONG S T, PHUNG S L, BOUZERDOUM A, et al. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images[J]. Magn Reson Imaging, 2020, 71: 1-10.
doi: S0730-725X(19)30732-5 pmid: 32407764 |
[9] |
SHROT Y, FRYDMAN L. Spatially encoded NMR and the acquisition of 2D magnetic resonance images within a single scan[J]. J Magn Reson, 2005, 172(2): 179-190.
pmid: 15649744 |
[10] | CAI S H, CAI C B, CHEN Z. Spatiotemporally encoded nuclear magnetic resonance and its applications[J]. J Xiamen University(Natural Science), 2021, 60(3): 542-554. |
蔡淑惠, 蔡聪波, 陈忠. 时空编码核磁共振方法及其应用[J]. 厦门大学学报(自然科学版), 2021, 60(3): 542-554. | |
[11] |
TAL A, FRYDMAN L. Spatial encoding and the single-scan acquisition of high definition MR images in inhomogeneous fields[J]. J Magn Reson, 2006, 182(2): 179-194.
pmid: 16843690 |
[12] | TAL A, FRYDMAN L. Single-scan multidimensional magnetic resonance[J]. Prog Nucl Magn Reson Spectrosc, 2010, 57(3): 241-292. |
[13] | BEN-ELIEZER N, IRANI M, FRYDMAN L. Super-resolved spatially encoded single-scan 2D MRI[J]. Magn Reson Med, 2010, 63(6): 1594-1600. |
[14] |
CHEN Y, LI J, QU X, et al. Partial Fourier transform reconstruction for single-shot MRI with linear frequency-swept excitation[J]. Magn Reson Med, 2013, 69(5): 1326-1336.
doi: 10.1002/mrm.24366 pmid: 22706702 |
[15] |
CAI C, DONG J, CAI S, et al. An efficient de-convolution reconstruction method for spatiotemporal-encoding single-scan 2D MRI[J]. J Magn Reson, 2013, 228: 136-147.
doi: 10.1016/j.jmr.2012.12.020 pmid: 23433507 |
[16] |
CHEN L, LI J, ZHANG M, et al. Super-resolved enhancing and edge deghosting (SEED) for spatiotemporally encoded single-shot MRI[J]. Med Image Anal, 2015, 23(1): 1-14.
doi: 10.1016/j.media.2015.03.004 pmid: 25910683 |
[17] |
ZHONG S, CHEN M, WEI X, et al. Understanding aliasing effects and their removal in SPEN MRI: A k-space perspective[J]. Magn Reson Med, 2023, 90(1): 166-176.
doi: 10.1002/mrm.29638 pmid: 36961093 |
[18] | LI Y J, YANG X Y, YANG X M. Magnetic resonance image reconstruction of multi-scale residual unet fused with attention mechanism[J]. Chinese J Magn Reson, 2023, 40(3):307-319. |
李奕洁, 杨馨雨, 杨晓梅. 融合注意力机制的多尺度残差Unet的磁共振图像重建[J]. 波谱学杂志, 2023, 40(3): 307-319. | |
[19] | LU Q Q, LIAN Z F, LI J L, et al. Magnetic resonance R2* parameter mapping of liver based on self-supervised deep neural network[J]. Chinese J Magn Reson, 2023, 40(3):258-269. |
陆琪琪, 连梓锋, 李嘉龙. 等. 基于自监督网络的肝脏磁共振R2*参数图像重建[J]. 波谱学杂志, 2023, 40(3): 258-269. | |
[20] |
DE LEEUW DEN BOUTER M L, IPPOLITO G, O’REILLY T P, et al. Deep learning-based single image super-resolution for low-field MR brain images[J]. Sci Rep, 2022, 12(1): 6362.
doi: 10.1038/s41598-022-10298-6 pmid: 35430586 |
[21] |
SONG L, WANG Q, LIU T, et al. Deep robust residual network for super-resolution of 2D fetal brain MRI[J]. Sci Rep, 2022, 12(1): 406.
doi: 10.1038/s41598-021-03979-1 pmid: 35013383 |
[22] | XIANG P C, CAI C B, WANG J C, et al. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network>[J]. Acta Phys Sin, 2022, 71(5):363-371. |
向鹏程, 蔡聪波, 王杰超. 等. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法[J]. 物理学报, 2022, 71(5): 363-371. | |
[23] | CHEN X, WANG W, HUANG J, et al. Ultrafast water-fat separation using deep learning-based single-shot MRI[J]. Magn Reson Med, 2022, 87(6): 2811-2825. |
[24] | CHOI S R, LEE M. Transformer architecture and attention mechanisms in genome data analysis: a comprehensive review[J]. Biology, 2023, 12(7): 1033. |
[25] | RAHALI A, AKHLOUFI M A. End-to-end transformer-based models in textual-based NLP[J]. AI, 2023, 4(1): 54-110. |
[26] |
YIN Y, TANG Z, WENG H. Application of visual transformer in renal image analysis[J]. BioMed Eng OnLine, 2024, 23(1): 27.
doi: 10.1186/s12938-024-01209-z pmid: 38439100 |
[27] | ZU B, CAO T, LI Y, et al. SwinT-SRNet: Swin transformer with image super-resolution reconstruction network for pollen images classification[J]. Eng Appl Artif Intell, 2024, 133: 108041. |
[28] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]// International Conference on Learning Representations, 2021. |
[29] | LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// IEEE/CVF International Conference on Computer Vision, 2021: 9992-10002. |
[30] | CHEN H, WANG Y, GUO T, et al. Pre-trained image processing transformer[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12294-12305. |
[31] | LIANG J, CAO J, SUN G, et al. SwinIR: Image restoration using swin transformer[C]// IEEE/CVF International Conference on Computer Vision Workshops, 2021: 833-1844. |
[32] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: Efficient transformer for high-resolution image restoration[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5718-5729. |
[33] | WANG Z, CUN X, BAO J, et al. Uformer: A general u-shaped transformer for image restoration[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 17662-17672. |
[34] |
SCHMIDT R, SEGINER A, FRYDMAN L. Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI[J]. Magn Reson Med, 2016, 75(5): 1935-1948.
doi: 10.1002/mrm.25742 pmid: 26108165 |
[35] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Neural Information Processing Systems, 2017: 6000-6010. |
[36] | WU H, XIAO B, CODELLA N, et al. Cvt: Introducing convolutions to vision transformers[C]// IEEE/CVF International Conference on Computer Vision, 2021: 22-31. |
[37] | YUAN K, GUO S, LIU Z, et al. Incorporating convolution designs into visual transformers[C]// IEEE/CVF International Conference on Computer Vision, 2021: 559-568. |
[38] |
VAN ESSEN D C, SMITH S M, BARCH D M, et al. The WU-Minn human connectome project: an overview[J]. NeuroImage, 2013, 80: 62-79.
doi: 10.1016/j.neuroimage.2013.05.041 pmid: 23684880 |
[1] | HUANG Min, ZHU Junlin, KAO Yuchen, ZHOU Dao, TANG Qiling. Multi-Coil MRI Image Reconstruction Based on ISTAVS-Net of Physical Model [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 418-429. |
[2] | YANG Liming, WANG Yuanjun. Research Progress of Denoising Algorithms for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 341-361. |
[3] | Dai Junlong, He Cong, Wu Jie, Bian Yun. Pancreatic Cystic Neoplasms Segmentation Network Combining Dual Decoding and Global Attention Upsampling Modules [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 151-161. |
[4] | YANG Yu, CHEN Bo, WU Liubin, LIN Enping, HUANG Yuqing, CHEN Zhong. Spectrum Reconstruction for Laplace NMR: From Handcraft Regularization to Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 191-208. |
[5] | CHANG Bo, SUN Haoyun, GAO Qingyu, WANG Lijia. Research Progress on Cardiac Segmentation in Different Modal Medical Images by Traditional Methods and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 224-244. |
[6] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[7] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[8] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
[9] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[10] | LU Qiqi, LIAN Zifeng, LI Jialong, SI Wenbin, MAI Zhaohua, FENG Yanqiu. Magnetic Resonance R2* Parameter Mapping of Liver Based on Self-supervised Deep Neural Network [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269. |
[11] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[12] | TIAN Hui, WU Jie, BIAN Yun, ZHANG Zhiwei, SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[13] | QIAN Chengyi,WANG Yuanjun. Research Progress on Imaging Classification of Alzheimer’s Disease Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 220-238. |
[14] | HUANG Min,LI Siyi,CHEN Junbo,ZHOU Dao. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219. |
[15] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||