[1] |
YUE Q, WANG Y J. A fiber tracking algorithm based on non-local constrained spherical deconvolution[J]. Chinese J Magn Reson, 2020, 37(4): 422-433.
|
|
岳晴, 王远军. 基于非局部约束球面反卷积模型的纤维追踪算法[J]. 波谱学杂志, 2020, 37(4): 422-433.
doi: 10.11938/cjmr20192798
|
[2] |
DELL'ACQUA F, RIZZO G, SCIFO P, et al. A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging[J]. IEEE Trans Biomed Eng, 2007, 54(3): 462-472.
|
[3] |
JIANG F, WANG Y J. Construction of human brain templates with diffusion tensor imaging data: a review[J]. Chinese J Magn Reson, 2018, 35(4): 520-530.
|
|
蒋帆, 王远军. 扩散张量成像的人脑模板构建[J]. 波谱学杂志, 2018, 35(4): 520-530.
doi: 10.11938/cjmr20182662
|
[4] |
CACCIOLA A, MILARDI D, CALAMUNERI A, et al. Constrained spherical deconvolution tractography reveals cerebello-mammillary connections in humans[J]. The Cerebellum, 2017, 16: 483-495.
|
[5] |
GUO F, LEEMANS A, VIERGEVER M A, et al. Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data[J]. NeuroImage, 2020, 218: 116948.
|
[6] |
PIETSCH M, CHRISTIAENS D, HUTTER J, et al. A framework for multi-component analysis of diffusion MRI data over the neonatal period[J]. NeuroImage, 2019, 186: 321-337.
doi: S1053-8119(18)32032-9
pmid: 30391562
|
[7] |
JHA R R, JASWAL G, BHAVSAR A, et al. Single-shell to multi-shell dMRI transformation using spatial and volumetric multilevel hierarchical reconstruction framework[J]. Magn Reson Imaging, 2022(87): 133-156.
|
[8] |
JEURISSEN B, TOURNIER J D, DHOLLANDER T, et al. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[J]. NeuroImage, 2014, 103: 411-426.
doi: S1053-8119(14)00644-2
pmid: 25109526
|
[9] |
JEURISSEN B, SZCZEPANKIEWICZ F. Multi-tissue spherical deconvolution of tensor-valued diffusion MRI[J]. NeuroImage, 2021, 245: 118717.
|
[10] |
KROENKE C D. Using diffusion anisotropy to study cerebral cortical gray matter development[J]. J Magn Reson, 2018, 292: 106-116.
doi: S1090-7807(18)30115-0
pmid: 29705039
|
[11] |
ASSAF Y. Imaging laminar structures in the gray matter with diffusion MRI[J]. NeuroImage, 2019, 197: 677-688.
doi: S1053-8119(17)31120-5
pmid: 29309898
|
[12] |
ASSAF Y, BASSER P J. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain[J]. NeuroImage, 2005, 27(1): 48-58.
doi: 10.1016/j.neuroimage.2005.03.042
pmid: 15979342
|
[13] |
ZHANG H, SCHNEIDER T, WHEELER-KINGSHOTT C A, et al. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. NeuroImage, 2012, 61(4): 1000-1016.
doi: 10.1016/j.neuroimage.2012.03.072
pmid: 22484410
|
[14] |
PALOMBO M, IANUS A, GUERRERI M, et al. SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI[J]. NeuroImage, 2020, 215: 116835.
|
[15] |
ZHU Y M, WANG Y J. Review of brain microstructural imaging with diffusion magnetic resonance imaging[J]. Journal of Chinese Computer Systems, 2023, 44(8): 1763-1770.
|
|
朱悦敏, 王远军. 扩散磁共振图像的大脑微结构成像研究综述[J]. 小型微型计算机系统, 2023, 44(8): 1763-1770.
|
[16] |
JESPERSEN S N, KROENKE C D, ØSTERGAARD L, et al. Modeling dendrite density from magnetic resonance diffusion measurements[J]. NeuroImage, 2007, 34(4): 1473-1486.
doi: 10.1016/j.neuroimage.2006.10.037
pmid: 17188901
|
[17] |
FIEREMANS E, JENSEN J H, HELPERN J A. White matter characterization with diffusional kurtosis imaging[J]. NeuroImage, 2011, 58(1): 177-188.
doi: 10.1016/j.neuroimage.2011.06.006
pmid: 21699989
|
[18] |
KADEN E, KRUGGEL F, ALEXANDER D C. Quantitative mapping of the per-axon diffusion coefficients in brain white matter[J]. Magn Reson Med, 2016, 75(4):1752-1763.
doi: 10.1002/mrm.25734
pmid: 25974332
|
[19] |
YANG D M, HUETTNER J E, BRETTHORST G L, et al. Intracellular water preexchange lifetime in neurons and astrocytes[J]. Magn Reson Med, 2018(3): 1616-1627.
doi: 10.1002/mrm.26781
pmid: 28675497
|
[20] |
DELL" ACQUA F, SCIFO P, RIZZO G, et al. A modified damped Richardson-Lucy algorithm to reduce isotropic background effects in spherical deconvolution[J]. NeuroImage, 2010, 49(2): 1446-1458.
doi: 10.1016/j.neuroimage.2009.09.033
pmid: 19781650
|
[21] |
DELUCA A, GUO F H, FROELING M, et al. Spherical deconvolution with tissue-specific response functions and multi-shell diffusion MRI to estimate multiple fiber orientation distributions (mFODs)[J]. NeuroImage, 2020, (222): 117206.
|
[22] |
TOURNIER J D, CALAMANTE F, CONNELLY A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution.[J]. NeuroImage, 2007, 35(4): 1459-1472.
doi: 10.1016/j.neuroimage.2007.02.016
pmid: 17379540
|
[23] |
ANDERSON A W. Measurement of fiber orientation distributions using high angular resolution diffusion imaging[J]. Magn Reson Med, 2005, 54(5): 1194-1206.
pmid: 16161109
|
[24] |
LI J R, NGUYEN V D, TRAN T N, et al. SpinDoctor: a Matlab toolbox for diffusion MRI simulation[J]. NeuroImage, 2019, 202: 116120.
|
[25] |
FANG C, NGUYEN V D, WASSERMANN D, et al. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module[J]. NeuroImage, 2020, 222: 117198.
|
[26] |
STEJSKAL E O, TANNER J E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient[J]. J Chem Phys, 1965, 42(1): 288-292.
|
[27] |
DADUCCI A, CANALES-RODRÍGUEZ E J, ZHANG H, et al. Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data[J]. NeuroImage, 2015, 105: 32-44.
doi: 10.1016/j.neuroimage.2014.10.026
pmid: 25462697
|
[28] |
潘映钰. 基于扩散磁共振成像的脑部神经纤维方向估计方法研究[D]. 上海: 上海理工大学, 2023.
|
[29] |
徐田田. 部分容积效应下的神经纤维方向估计模型与算法[D]. 杭州: 浙江工业大学, 2017.
|