Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (4): 418-429.doi: 10.11938/cjmr20243109
• Articles • Previous Articles Next Articles
HUANG Min*(), ZHU Junlin, KAO Yuchen, ZHOU Dao, TANG Qiling
Received:
2024-04-15
Published:
2024-12-05
Online:
2024-06-28
Contact:
* Tel: 13554286418, E-mail: CLC Number:
HUANG Min, ZHU Junlin, KAO Yuchen, ZHOU Dao, TANG Qiling. Multi-Coil MRI Image Reconstruction Based on ISTAVS-Net of Physical Model[J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 418-429.
Table 1
Average evaluation metrics of two traditional algorithms (L1-ESPIRiT, ISTA) and four deep learning networks (U-Net, ISTA-Net+, VS-Net, ISTAVS-Net) in coronary data reconstruction results
评价指标 | AF | L1-ESPIRiT | ISTA | U-Net | ISTA-Net+ | VS-Net | ISTAVS-Net |
---|---|---|---|---|---|---|---|
PSNR/dB | 2 | 32.671 | 34.051 | 40.926 | 40.879 | 40.675 | 42.021 |
4 | 28.868 | 30.390 | 36.911 | 36.281 | 36.478 | 37.724 | |
6 | 27.234 | 29.567 | 34.052 | 33.808 | 33.932 | 34.609 | |
8 | 26.976 | 28.446 | 33.287 | 32.713 | 33.184 | 33.341 | |
SSIM | 2 | 0.8802 | 0.9301 | 0.9573 | 0.9470 | 0.9547 | 0.9604 |
4 | 0.8275 | 0.8680 | 0.9257 | 0.9128 | 0.9208 | 0.9311 | |
6 | 0.7608 | 0.8424 | 0.8950 | 0.8807 | 0.8936 | 0.9002 | |
8 | 0.7020 | 0.8205 | 0.8825 | 0.8679 | 0.8833 | 0.8839 | |
NMSE | 2 | 0.0205 | 0.0160 | 0.0107 | 0.0113 | 0.0109 | 0.0105 |
4 | 0.0384 | 0.0362 | 0.0189 | 0.0193 | 0.0190 | 0.0183 | |
6 | 0.0478 | 0.0438 | 0.0277 | 0.0280 | 0.0275 | 0.0271 | |
8 | 0.0578 | 0.0567 | 0.0347 | 0.0350 | 0.0316 | 0.0304 |
Table 2
Evaluation metrics in axial view and coronal view
轴位 | 冠状位 | ||||||
---|---|---|---|---|---|---|---|
L1-ESPIRiT | ISTA | ISTAVS-Net | L1-ESPIRiT | ISTA | ISATVS-Net | ||
PSNR/dB | 31.743 | 34.051 | 38.952 | 27.234 | 29.567 | 34.609 | |
SSIM | 0.8180 | 0.9089 | 0.9382 | 0.7608 | 0.8424 | 0.9002 | |
NMSE | 0.0467 | 0.0395 | 0.0227 | 0.0478 | 0.0438 | 0.0271 | |
Times/s | 196.12 | 71.66 | 2.11 | 153.95 | 80.13 | 1.04 |
[1] |
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195.
doi: 10.1002/mrm.21391 pmid: 17969013 |
[2] | SONG Y, SHEN L, XING L, et al. Solving inverse problems in medical imaging with score-based generative models[J]. arXiv preprint, arXiv: 2111.08005, 2021. |
[3] | GENG C H, JIANG M F, FANG X, et al. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction[J]. Comput Meth Prog Bio, 2023, 232: 107440. |
[4] | PAL A, RATHI Y. A review and experimental evaluation of deep learning methods for MRI reconstruction[J]. J Mach Learn Biomed Imaging, 2022, 1: 001. |
[5] | WANG S, SU Z, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]// 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic: IEEE, 2016: 514-517. |
[6] | JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Trans Image Process, 2017, 26(9): 4509-4522. |
[7] |
ELIZABETH C, JOSEPH C, JOHN P, et al. Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications[J]. Magn Reson Med, 2021, 86(2):1093-1109.
doi: 10.1002/mrm.28733 pmid: 33724507 |
[8] | ZHAO X, YANG T, LI B, et al. SwinGAN: A dual-domain swin transformer-based generative adversarial network for MRI reconstruction[J]. Comput Biol Med, 2023, 153: 106513. |
[9] | LI Y J, YANG X Y, YANG X M. Magnetic resonance image reconstruction of multi-scale residual Unet fused with attention mechanism[J]. Chinese J Magn Reson, 2023, 40(3): 307-319. |
李奕洁, 杨馨雨, 杨晓梅. 融合注意力机制的多尺度残差Unet的磁共振图像重建[J]. 波谱学杂志, 2023, 40(3): 307-319.
doi: 10.11938/cjmr20223040 |
|
[10] | SHI W C, JIN Z Y, YE Z. Fast multi-channel magnetic resonance imaging based on PCAU-Net[J]. Chinese J Magn Reson, 2023, 40(1): 39-51. |
施伟成, 金朝阳, 叶铮. 基于PCAU-Net的快速多通道磁共振成像方法[J]. 波谱学杂志, 2023, 40(1): 39-51.
doi: 10.11938/cjmr20222992 |
|
[11] | YANG Y, SUN J, LI H B, et al. Deep ADMM-Net for compressive sensing MRI[C]// Advances in neural information processing systems, Barcelona, Spain, 2016: 10-18. |
[12] |
HAMMERNIK K, KLATZER T, KOBLER E, et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magn Reson Med, 2018, 79(6): 3055-3071.
doi: 10.1002/mrm.26977 pmid: 29115689 |
[13] | SRIRAM A, ZBONTAR J, MURRELL T, et al. End-to-end variational networks for accelerated MRI reconstruction[J]. arXiv preprint, arxiv: 2004.06688, 2020. |
[14] | CHEN E Z, WANG P, CHEN X, et al. Pyramid convolutional RNN for MRI image reconstruction[J]. IEEE Trans Med Imag, 2022, 41(8): 2033-2047. |
[15] | QIAO X, HUANG Y, LI W. MEDL-Net: A model-based neural network for MRI reconstruction with enhanced deep learned regularizers[J]. Magn Reson Med, 2023, 89(5): 2062-2075. |
[16] | BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J Imaging Sci, 2009, 2(1): 183-202. |
[17] | ZHANG J, GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]// IEEE conference on computer vision and pattern recognition, Salt Lake City, USA: IEEE, 2018: 1828-1837. |
[18] | YOU D, XIE J, ZHANG J. ISTA-NET++: Flexible deep unfolding network for compressive sensing[C]// IEEE International Conference on Multimedia and Expo, Shenzhen, China: IEEE, 2021: 1-6. |
[19] | DUAN J, SCHLEMPER J, QIN C, et al. VS-Net: variable splitting network for accelerated parallel MRI reconstruction[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China: Springer, 2019: 713-722. |
[20] | YE J C. Compressed sensing MRI: A review from signal processing perspective[J]. BMC Biomedical Engineering, 2019, 1(1): 1-17. |
[21] | ARGHYA P, YOGESH R. A review and experimental evaluation of deep learning methods for MRI reconstruction[J]. J Mach Learn Biomed Imaging, 2022, 3: 1-55. |
[22] | CHEN Q, SHAH N J, WORTHOFF W A. Compressed sensing in sodium magnetic resonance imaging: techniques, applications, and future prospects[J]. J Magn Reson Imaging, 2022, 55(5): 1340-1356. |
[23] | JURE Z, FLORIAN K, ANUROOP S, et al. FastMRI: an open dataset and benchmarks for accelerated MRI[J]. arXiv preprint, arXiv: 1811.08839, 2019. |
[24] | PENG L, MARK J, MICHAEL L, et al. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA[J]. Magn Reson Med, 2014, 71(3): 990-1001. |
[25] | HONG G, WEI Y, MORLEY W, et al. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling[J]. Comput Med Imag Graph, 2023, 106: 102206. |
[1] | NING Xinzhou, HUANG Zhen, CHEN Xiqu, LIU Xinjie, CHEN Gang, ZHANG Zhi, BAO Qingjia, LIU Chaoyang. Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 454-468. |
[2] | PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453. |
[3] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[4] | LIU Ying, LIN Ling, YUAN Binhua, ZHANG Haowei. Research Progress of MRI Gradient Waveform Generator [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 99-115. |
[5] | ZHOU Tianli, ZHANG Dian, WU Jizhi, JIA Huihui, CHANG Yan, SHENG Mao, YANG Xiaodong. Application of MRI-based Finite Element Modeling and Analysis in Periacetabular Osteotomy [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 397-409. |
[6] | CHEN Mengying, WU Yupeng, PANG Qifan, ZHONG Haodong, LI Gaiying, LI Jianqi. Simultaneously Neuromelanin-sensitive Imaging and Quantitative Susceptibility Mapping in the Whole Brain [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 385-396. |
[7] | REN Hongjin, MA Yan, XIAO Liang. Knee Joint Model Construction and Local Specific Absorption Rate Estimation Based on Generative Adversarial Networks [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 410-422. |
[8] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[9] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[10] | FANG Yi, WAN Qian, YUAN Jiawen, LIN Shaoqiang, LI Ye, LIU Xin, ZHENG Hairong, ZOU Chao. Comparison Study of the Metabolic Characteristics of Three Kinds of Deuterium-labeled Glucose in Rat Glioma Cells [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 239-245. |
[11] | TIAN Yu,ZHOU Chen,ZHANG Yanan,WANG Peng,ZHANG Caiyun,SONG Tianwei,QIAN Junchao. In vivo MR Vessel Size Imaging of Brain Vascular Plasticity After Experimental Spinal Cord Injury [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 158-168. |
[12] | ZHANG Tianning,LEI Zhanzhi,XIAO Liang. Design of a Data Transmission System for Magnetic Resonance Imaging Based on SerialLite II Protocol [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 179-191. |
[13] | HAN Bing,XU Jing,WANG Yuanjun,WANG Zhongling. Classification of BI-RADS 3-5 Breast Lesions Based on MRI Radiomics [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 52-67. |
[14] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
[15] | LI Pan,FANG Delei,ZHANG Junxia,MA Debei. Magnetic Resonance Compatibility Analysis Method of Surgical Robotic System Based on Image Quality Evaluation [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 79-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||