Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (2): 139-150.doi: 10.11938/cjmr20233081cstr: 32225.14.cjmr20233081
• Articles • Previous Articles Next Articles
ZHANG Haowei, WANG Yuncheng, LIU Ying*()
Received:
2023-09-08
Published:
2024-06-05
Online:
2023-11-22
Contact:
*Tel: 18602168660, E-mail: ling2431@163.com.
CLC Number:
ZHANG Haowei, WANG Yuncheng, LIU Ying. Brain Age Assessment of Patients with Major Depressive Disorder Based on Convolutional Neural Network[J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 139-150.
Table 1
The parameters of MRI in different hospitals
医院序号 | 扫描仪 | 圈 | 重复时间/ms | 回波时间/ms | 反转角/° | 厚度/mm | 层数 | 时间点/s |
---|---|---|---|---|---|---|---|---|
1 | Siemens Tim Trio 3 T | 32 | 2000 | 30 | 90 | 4.0/0.8 | 30 | 210 |
2 | Philips Achieva 3 T | 8 | 2000 | 30 | 90 | 4.0/0 | 37 | 200 |
3 | Siemens 1.5 T | 16 | 2000 | 40 | 90 | 5.0/1.2 | 26 | 150 |
3 | GE Signa 3 T | 32 | 2000 | 30 | 90 | 5.0/0 | 22 | 100 |
6 | Siemens Tim Trio 3 T | 32 | 2000 | 30 | 70 | 4/0 | 33 | 180 |
7 | GE discovery MR750 | 8 | 2000 | 30 | 90 | 3.2/0 | 37 | 184 |
8 | GE Signa 3 T | 8 | 2000 | 30 | 90 | 3.0/0 | 35 | 200 |
9 | GE Discovery MR750 3.0 T | 8 | 2000 | 25 | 90 | 3.0/1.0 | 35 | 200 |
10 | Siemens Tim Trio 3 T | 32 | 2000 | 30 | 90 | 3.0/1.52 | 32 | 212 |
11 | GE Signa 3 T | 8 | 2000 | 30 | 90 | 5 | 33 | 200 |
12 | GE Signa 3 T | 8 | 2000 | 30 | 90 | 5 | 33 | 240 |
13 | GE Excite 1.5 T | 16 | 2500 | 35 | 90 | 4 /0 | 36 | 150 |
14 | Siemens Tim Trio 3 T | 32 | 2500 | 25 | 90 | 3.5/0 | 39 | 200 |
15 | Siemens Verio 3.0 T MRI | 12 | 2000 | 25 | 90 | 4/0 | 36 | 240 |
16 | GE Signa 3 T | 8 | 2000 | 30 | 90 | 5/0 | 30 | 200 |
17 | GE Signa 3 T | 8 | 2000 | 40 | 90 | 4.0/0 | 33 | 240 |
18 | Philips Achieva 3.0 T scanner | 8 | 2000 | 35 | 90 | 5.0/1.0 | 24 | 200 |
19 | GE Signa 3 T | 8 | 2000 | 22.5 | 30 | 4.0/0.6 | 33 | 240 |
20 | Siemens Tim Trio 3 T | 12 | 2000 | 30 | 90 | 3.0/1.0 | 32 | 242 |
21 | Siemens Tim Trio 3 T | 32 | 2000 | 30 | 90 | 3.5/0.7 | 33 | 240 |
22 | Philips Gyroscan Achieva 3.0 T | 32 | 2000 | 30 | 90 | 4.0 /0 | 36 | 250 |
23 | Philips Achieva 3.0 T TX | 8 | 2000 | 30 | 90 | 4.0/0 | 38 | 240 |
24 | GE Signa 1.5 T | 8 | 2000 | 40 | 90 | 5/1 | 24 | 160 |
25 | Siemens Verio 3 T | 12 | 2000 | 25 | 90 | 4.0/0 | 36 | 240 |
[1] | HIRSCHFELD R M. Differential diagnosis of bipolar disorder and major depressive disorder[J]. J Affect Disorders, 2014, 169(S1): S12-S16. |
[2] | VERHOEVEN J E, RÉVÉSZ D, PICARD M, et al. Depression, telomeres and mitochondrial DNA: between- and within-person associations from a 10-year longitudinal study[J]. Mol Psychiatry, 2018, 23(4): 850-857. |
[3] |
PENNINX B W J H. Depression and cardiovascular disease: Epidemiological evidence on their linking mechanisms[J]. Neurosci Biobehav Rev, 2017, 74: 277-286.
doi: S0149-7634(15)30355-9 pmid: 27461915 |
[4] | KÖNIG H, KÖNIG H-H, KONNOPKA A. The excess costs of depression: A systematic review and meta-analysis[J]. Epidemiol Psychiatr Sci, 2019, 29: e30. |
[5] | HAN L K M, DINGA R, HAHN T, et al. Brain aging in major depressive disorder: Results from the enigma major depressive disorder working group[J]. Mol Psychiatry, 2021, 26(9): 5124-5139. |
[6] | LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: An expanding universe[J]. Cell, 2023, 2: 243-278. |
[7] | BOCKLANDT S, LIN W, SEHL M E, et al. Epigenetic predictor of age[J]. PLoS One, 2023, 6: e14821. |
[8] | ELLIOTT M L, BELSKY D W, KNODT A R, et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort[J]. Mol Psychiatry, 2021, 26(8): 3829-3838. |
[9] | BAO H, CAO J, CHEN J, et al. Aging biomarker consortium. Biomarkers of aging[J]. Sci China Life Sci, 2023, 5: 893-1066. |
[10] |
SHAHAB S, MULSANT B H, LEVESQUE M L, et al. Brain structure, cognition, and brain age in schizophrenia, bipolar disorder, and healthy controls[J]. Neuropsychopharmacology, 2019, 44(5): 898-906.
doi: 10.1038/s41386-018-0298-z pmid: 30635616 |
[11] | LUO Y, CHEN W, QIU J, et al. Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease[J]. Nat Commun, 2021, 1: 5346. |
[12] | SONE D, BEHESHTI I, MAIKUSA N, et al. Neuroimaging-based brain-age prediction in diverse forms of epilepsy: A signature of psychosis and beyond[J]. Mol Psychiatry, 2021, 26(3): 825-834. |
[13] | HO T C, GUTMAN B, POZZI E, et al. Subcortical shape alterations in major depressive disorder: Findings from the enigma major depressive disorder working group[J]. Hum Brain Mapp, 2022, 43(1): 341-351. |
[14] |
COLE J H, POUDEL R P K, TSAGKRASOULIS D, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker[J]. NeuroImage, 2017, 163: 115-124.
doi: S1053-8119(17)30640-7 pmid: 28765056 |
[15] |
MANARD M, BAHRI M A, SALMON E, et al. Relationship between grey matter integrity and executive abilities in aging[J]. Brain Research, 2016, 1642: 562-580.
doi: S0006-8993(16)30265-7 pmid: 27107940 |
[16] |
HAN S, CHEN Y, ZHENG R, et al. The stage-specifically accelerated brain aging in never-treated first-episode patients with depression[J]. Hum Brain Mapp, 2021, 42(11): 3656-3666.
doi: 10.1002/hbm.25460 pmid: 33932251 |
[17] | BALLESTER P L, SUH J S, NOGOVITSYN N, et al. Accelerated brain aging in major depressive disorder and antidepressant treatment response: A can-bind report[J]. NeuroImage: Clinical, 2021, 32: 102864. |
[18] | BESTEHER B, GASER C, NENADIĆ I. Machine-learning based brain age estimation in major depression showing no evidence of accelerated aging[J]. Psychiatry Res Neuroimaging, 2019, 290: 1-4. |
[19] |
HØGESTØL E A, KAUFMANN T, NYGAARD G O, et al. Cross-sectional and longitudinal MRI brain scans reveal accelerated brain aging in multiple sclerosis[J]. Front Neurol, 2019, 10: 450.
doi: 10.3389/fneur.2019.00450 pmid: 31114541 |
[20] | FRANKE K, GASER C. Ten years of brainage as a neuroimaging biomarker of brain aging: What insights have we gained[J]. Front Neurol, 2019, 10: 789. |
[21] |
AYCHEH H M, SEONG J-K, SHIN J-H, et al. Biological brain age prediction using cortical thickness data: A large scale cohort study[J]. Front Aging Neurosci, 2018, 10: 252.
doi: 10.3389/fnagi.2018.00252 pmid: 30186151 |
[22] |
FRANKE K, ZIEGLER G, KLÖPPEL S, et al. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters[J]. NeuroImage, 2010, 50(3): 883-892.
doi: 10.1016/j.neuroimage.2010.01.005 pmid: 20070949 |
[23] | COLE J H, RITCHIE S J, BASTIN M E, et al. Brain age predicts mortality[J]. Mol Psychiatry, 2018, 23(5): 1385-1392. |
[24] | TANVEER M, GANAIE M A, BEHESHTI I, et al. Deep learning for brain age estimation: A systematic review[J]. Information Fusion, 2023, 96: 130-143. |
[25] | YANG H, CHEN X, CHEN Z-B, et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder[J]. Mol Psychiatry, 2021, 26(12): 7363-7371. |
[26] | YAN C G, CHEN X, LI L, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder[J]. Proc Natl Acad Sci USA, 2019, 116(18): 9078-9093. |
[27] | CAI W Q, WANG Y J. Advances in construction of human brain atlases from magnetic resonance images[J]. Chinese J Magn Reson, 2020, 37(2): 241-253. |
蔡文琴, 王远军. 基于磁共振成像的人脑图谱构建方法研究进展[J]. 波谱学杂志, 2020, 37(2): 241-253.
doi: 10.11938/cjmr20192706 |
|
[28] | BEHESHTI I, GANAIE M A, PALIWAL V, et al. Predicting brain age using machine learning algorithms: A comprehensive evaluation[J]. IEEE J Biomed Health Inform, 2022, 4: 1432-1440. |
[29] | QIU X X, HAN X, WANG Y, et al. The alteration of rich club in brain functional network in internet gaming disorder[J]. Chinese J Magn Reson, 2022, 39(3): 258-266. |
邱先鑫, 韩旭, 汪耀, 等. 网络游戏障碍人群大脑功能网络rich club结构的改变[J]. 波谱学杂志, 2022, 39(3): 258-266.
doi: 10.11938/cjmr20212967 |
|
[30] |
KOUTSOULERIS N, DAVATZIKOS C, BORGWARDT S, et al. Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders[J]. Schizophr Bull, 2014, 40(5): 1140-1153.
doi: 10.1093/schbul/sbt142 pmid: 24126515 |
[31] | HAN L K M, DINGA R, HAHN T, et al. Brain aging in major depressive disorder: Results from the enigma major depressive disorder working group[J]. Mol Psychiatry, 2021, 26: 5124-5139. |
[32] |
DUNLOP K, VICTORIA L W, DOWNAR J, et al. Accelerated brain aging predicts impulsivity and symptom severity in depression[J]. Neuropsychopharmacology, 2021, 46(5): 911-919.
doi: 10.1038/s41386-021-00967-x pmid: 33495545 |
[33] |
AI A L, NICDAO E G, APPEL H B, et al. Ethnic identity and major depression in asian American subgroups nationwide: Differential findings in relation to subcultural contexts[J]. J Clin Psychol, 2015, 71(12): 1225-1244.
doi: 10.1002/jclp.22214 pmid: 26335455 |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a portable magnetic resonance multi-source RF pulse generator [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[2] | NING Xinzhou, HUANG Zhen, CHEN Xiqu, LIU Xinjie, CHEN Gang, ZHANG Zhi, BAO Qingjia, LIU Chaoyang. Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 454-468. |
[3] | PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453. |
[4] | LUO Wenyou, RONG Xing. A W-Band Electron Paramagnetic Resonance Probe Based on Fabry-Perot Cavity [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 393-404. |
[5] | LI Lianjie, ZHENG Yu, XIE Shuguang, ZHANG Ming, LI Hongchuang, LIU Xiaoling, ZHAO Xiuchao, HAN Yeqing, LI Haidong, FAN Li, XIAO Yi, LIU Shiyuan, ZHOU Xin. Assessment of Pulmonary Function Changes of AECOPD with Hyperpolarized 129Xe MR [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 363-372. |
[6] | ZENG Xiangzheng, CHEN Junfei, HUANG Chongyang, PI Haiya, CAO Li, HUANG Zhen, GUO Wenlong, FENG Jiwen, LIU Chaoyang. Design and Research of the dDNP Automated Dissolution System [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 382-392. |
[7] | ZHU Xiangwei, YANG Xue, WEI Daxiu, YAO Yefeng. In Vivo Glutathione Molecular MRS Signal Selection Based on Nuclear Spin Singlet States [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 373-381. |
[8] | Hao-Yun SUN Li JiaWANG. Fusing Attention Mechanism and Dilated Convolution 3D MobileNetV2 for Classification of Hepatic Nodules [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[9] | YANG Liming, WANG Yuanjun. Research Progress of Denoising Algorithms for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 341-361. |
[10] | LI Mingdao, YAO Shouquan, XU Juncheng, LV Xinglong, HE Fengcheng, JIANG Yu. Design of the Handheld NMR Console [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 257-265. |
[11] | WANG Xingle, SHAO Zhengze, DONG Hongchun, WEI Daxiu, CHEN Qun, YAO Yefeng. Studies on the 1H NMR Spectral Features of Hydrogen Molecules in the Interstices of SiO2 Particles [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 315-321. |
[12] | LUO Qingjin, WU Liangyong, WANG Yuting, YAN Haiyang, XIANG Yifeng, CHEN Siyu. Optimization Analysis and Experimental Verification of FID NMR Coil in Polarized 3He Systems [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 266-275. |
[13] | YI Peng, CAO Li, HUANG Zhen, CHENG Xin, WANG Jiaxin, CHEN Li, CHEN Fang, BAO Qingjia, ZHANG Zhi, LIU Chaoyang. Development of Gradient Coils and 1H/13C Dual-resonance RF Coils for a Small-bore 5 T MRI System [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 245-256. |
[14] | CHEN Qi, LI Haidong, FANG Yuan, SHEN Luyang, LIU Wuji, LUO Ming, LI Yecheng, ZHANG Ming, ZHAO Xiuchao, SHI Lei, ZHOU Qian, HAN Yeqing, ZHOU Xin. Association of 129Xe Ventilation Functional MRI with Pulmonary Lesion Types [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 276-285. |
[15] | SHI Xing, ZHANG Yue, ZHANG Xiuli, WANG Cong. Stereochemical Research on Cembranes Diterpenoid Sinulariol Z Based on Residual Dipolar Couplings [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 322-330. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||