Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (4): 393-404.doi: 10.11938/cjmr20243111
• Articles • Previous Articles Next Articles
Received:
2024-04-19
Published:
2024-12-05
Online:
2024-06-07
Contact:
* Tel: 0551-63606664, E-mail: CLC Number:
LUO Wenyou, RONG Xing. A W-Band Electron Paramagnetic Resonance Probe Based on Fabry-Perot Cavity[J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 393-404.
Fig. 2
(a) Schematic diagram of the probe, mainly composed of two parts, Fabry-Perot cavity and corrugated waveguides. The corrugated waveguides work as a mode converter for generating the HE11 mode from the TE11 mode. ①~④ are four segments of corrugated waveguides; (b) Cross-sectional diagram of the corrugated waveguide②; (c) Schematic diagram of the probe, ⑤ is the metallic mesh and ⑥ is the spherical mirror; (d) Photograph of the Fabry-Perot cavity, ⑦ is the metallic mesh, ⑧ is the sample holder, ⑨ is the modulation coil, ⑩ is the spherical mirror, and ⑪⑫⑬ are piezoelectric positioners
Fig. 4
(a) Reflection coefficient of the probe. Black dots are experimental data, and the dashed line stands for the fitting result. (b) Resonance frequency of the Fabry-Perot cavity versus the moving distance of the piezoelectric positioner. Black dots are experimental data, and the dashed lines stand for the fitting result
Fig. 5
Schematic diagram of the W-band EPR spectrometer. The superconducting magnet generates B 0. Box 1 stands for the W-band microwave(MW) transmitter. An 84.5 GHz Local Oscillator(LO) microwave signal is mixed with the 9~10 GHz signal to generate a 93.5~94.5 GHz W-band microwave. Box 2 stands for the W-band microwave receiver. The output signal from the probe is amplified by a low-noise amplifier (LNA) and mixed with the 84.5 GHz LO signal. The output signal from the down converter mixer is fed into the X-band microwave bridge. The EPR signal is collected by the lock-in amplifier and converted to the digital signal
Fig. 7
(a) W-band continuous wave EPR spectra of Mn(II) in GaO powder at room temperature. The peak to peak amplitude of the signal within the dashed box is measured as the signal strength. (b) Noise signal measured at off resonance. The MW frequency is 94.04 GHz with an input power of 2.8 mW. The modulation amplitude is 4.4 G@100 kHz. The time constant is 100 ms
Table 2
Comparison of this work with the existing work
序号 | 频率/GHz | 探头种类 | 灵敏度/ (spins/(G• | 极化度 | 室温灵敏度/ (spins/(G• |
---|---|---|---|---|---|
1[ | 94 | 圆柱形谐振腔 | 0.7515% | ||
2[ | 95 | 法布里-珀罗谐振腔 | 1.753% | ||
3[ | 94 | 非谐振 | 90.57% | ||
4(本工作) | 94 | 法布里-珀罗谐振腔 | 0.7515% |
[1] |
MÖBIUS K, SAVITSKY A, SCHNEGG A, et al. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer[J]. Phys Chem Chem Phys, 2005, 7(1): 19-42.
pmid: 19785170 |
[2] | DUSS O, YULIKOV M, JESCHKE G, et al. EPR-aided approach for solution structure determination of large RNAs or protein-RNA complexes[J]. Nat Commun, 2014, 5(1): 3669. |
[3] |
ROESSLER M M, SALVADORI E. Principles and applications of EPR spectroscopy in the chemical sciences[J]. Chem Soc Rev, 2018, 47(8): 2534-2553.
doi: 10.1039/c6cs00565a pmid: 29498718 |
[4] | BABUNTS R A, GURIN A S, EDINACH E V, et al. Non-Kramers iron S = 2 ions in β-Ga2O3 crystals: high-frequency low-temperature EPR study[J]. J Appl Phys, 2022, 132(15): 155703. |
[5] | PENG Z, DALLAS J, TAKAHASHI S. Reduction of surface spin-induced electron spin relaxations in nanodiamonds[J]. J Appl Phys, 2020, 128(5): 054301. |
[6] | HE Y, SHI Z F, ZHAO X X, et al. Design and performance of a new multifunction X-band EPR spectrometer[J]. Chinese J Magn Reson, 2022, 39(1): 1-10. |
贺羽, 石致富, 赵新星, 等. 新型X波段多功能EPR谱仪的设计与性能[J]. 波谱学杂志, 2022, 39(1): 1-10.
doi: 10.11938/cjmr20212965 |
|
[7] | YU Y Y, LI X Y, SUN B, et al. Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss[J]. Chin Phys B, 2015, 24(6): 068702. |
[8] | PARIZH M, LVOVSKY Y, SUMPTION M. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges[J]. Supercond Sci Technol, 2016, 30(1): 014007. |
[9] | FEHER G. Sensitivity considerations in microwave paramagnetic resonance absorption techniques[J]. Bell Syst Tech J, 1957, 36(2): 449-484. |
[10] | MÖBIUS K, SAVITSKY A. High-field/high-frequency EPR spectroscopy in protein research: principles and examples[J]. Appl Magn Reson, 2023, 54(2): 207-287. |
[11] |
TELSER J, KRZYSTEK J, OZAROWSKI A. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry[J]. J Biol Inorg Chem, 2014, 19: 297-318.
doi: 10.1007/s00775-013-1084-3 pmid: 24477944 |
[12] | ROHRER M, MACMILLAN F, PRISNER T F, et al. Pulsed ENDOR at 95 GHz on the primary acceptor ubisemiquinone in photosynthetic bacterial reaction centers and related model systems[J]. J Phys Chem B, 1998, 102(23): 4648-4657. |
[13] | CLAUSS C, DRESSEL M, SCHEFFLER M. Optimization of coplanar waveguide resonators for ESR studies on metals[C]// J Phys Conf Ser. IOP Publishing, 2015, 592(1): 012146. |
[14] | PETASIS D T, HENDRICH M P. Quantitative interpretation of multifrequency multimode EPR spectra of metal containing proteins, enzymes, and biomimetic complexes[M]// Methods in Enzymology. Academic Press, 2015, 563: 171-208. |
[15] | WEIL J A, BOLTON J R. Electron paramagnetic resonance: elementary theory and practical applications[M]. USA: John Wiley & Sons, 2007. |
[16] | WEBB A. Cavity-and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging[J]. Prog Nucl Magn Reson Spectrosc, 2014, 83: 1-20. |
[17] | EARLE K A, FREED J H. Quasioptical hardware for a flexible FIR-EPR spectrometer[J]. Appl Magn Reson, 1999, 16(2): 247-272. |
[18] | MÖBIUS K. High-field/high-frequency EPR/ENDOR—a powerful new tool in photosynthesis research[J]. Appl Magn Reson, 1995, 9: 389-407. |
[19] | HAINDL E, MÖBIUS K. A 94 GHz EPR spectrometer with Fabry-Perot resonator[J]. Z Naturforsch A, 1985, 40(2): 169-172. |
[20] | EARLE K A, DZIKOVSKI B, HOFBAUER W, et al. High-frequency ESR at ACERT[J]. Magn Reson Chem, 2005, 43(S1): S256-S266. |
[21] | NEUGEBAUER P. Development of heterodyne high field/high frequency electron paramagnetic resonance spectrometer at 285 GHz[D]. Grenoble: Université Joseph-Fourier-Grenoble I, 2010 |
[22] | BURGHAUS O, ROHRER M, GOTZINGER T, et al. A novel high-field/high-frequency EPR and ENDOR spectrometer operating at 3 mm wavelength[J]. Meas Sci Technol, 1992, 3(8): 765-774. |
[23] | BROOKER G. Modern classical optics[M]. Oxford University Press, 2003. |
[24] | REBUFFI L, CRENN J P. Radiation patterns of the HE11 mode and Gaussian approximations[J]. Int J Infrared Millimeter Waves, 1989, 10: 291-311. |
[25] | SMITH G M, LESURF J C G, MITCHELL R H, et al. Quasi-optical CW mm-wave electron spin resonance spectrometer[J]. Rev Sci Instrum, 1998, 69(11): 3924-3937. |
[26] | CAVALLO A, DOANE J, CUTLER R. Low-loss broadband multimode corrugated waveguide performance[J]. Rev Sci Instrum, 1990, 61(9): 2396-2400. |
[27] | 赵亮亮. THz金属网格带通滤波器的研究[D]. 南京: 东南大学. |
[28] | MATSUI T, ARAKI K, KIYOKAWA M. Gaussian-beam open resonator with highly reflective circular coupling regions[J]. IEEE Trans Microw Theory Tech, 1993, 41(10): 1710-1714. |
[29] | ULRICH R. Far-infrared properties of metallic mesh and its complementary structure[J]. Infrared Phys, 1967, 7(1): 37-55. |
[30] | HE Y, KANG R, SHI Z, et al. A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer[J]. Chin Phys B, 2022, 31(11): 117601. |
[31] | NIELSEN R D, ROBINSON B H. The effect of field modulation on a simple resonance line shape[J]. Concept Magn Reson A, 2004, 23(1): 38-48. |
[32] | EATON G R, EATON S S, BARR D P, et al. Quantitative EPR[M]. Springer Science & Business Media, 2010. |
[33] | REED G H, MARKHAM G D. EPR of Mn (II) complexes with enzymes and other proteins[J]. Biol Magn Reson, 1984, 6: 73-142. |
[34] | SCHMALBEIN D, MARESCH G G, KAMLOWSKI A, et al. The Bruker high-frequency-EPR system[J]. Appl Magn Reson, 1999, 16(2): 185-205. |
[35] | BABUNTS R A, BADALYAN A G, GURIN A S, et al. Capabilities of compact high-frequency EPR/ESE/ODMR spectrometers based on a series of microwave bridges and a cryogen-free magneto-optical cryostat[J]. Appl Magn Reson, 2020, 51: 1125-1143. |
[1] | SONG Linhong, CHAI Xin, ZHANG Xu, JIANG Bin, LIU Maili. Optimizing Sensitivity-enhanced Quantitative 13C NMR Experiment by Genetic Algorithm [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 365-375. |
[2] | KONG Lingwen, KUANG Guangli, WU Xiangyang. Research Progress of EPR Spectrometer Under High Frequency and High Field [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 341-364. |
[3] | ZHOU Zi-fa, CHEN Fu, ZHANG Hua-ming. A Theoretical Study of the EPR Spectra and Local Structures of Cu2+ Center in Cu1-xHxZr2(PO4)3 [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 399-406. |
[4] | ZHAO Zhi-hui, LIU Biao-lan, YAN Xiao-shuang, WU Shuai-shuai, RU Ge-ying, MAO Shi-zhen, Feng Ji-wen. Thermally Triggered Self-Assembly of PSSS50-b-PNIPAM300 in Binary Solvent Studied by NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 502-509. |
[5] | CHEN Li, TAN Xiao-li, ANTAL Rockenbauer, WANG Run-ling, LIU Yang-ping. Efficient Synthesis and Characterization of PEGylated/Deuterated Derivatives of Monophosphonated Tetrathiatriarylmethyl Radicals [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 208-218. |
[6] | LIU Zao, ZHU Tian-xiong, HE Yu-gui, CHEN Jun-fei, FENG Ji-wen, LIU Chao-yang. Microwave Bridge in a DNP-EPR Multifunctional Spectrometer:Design and Implementation [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 357-364. |
[7] | FAN Kai, GUO Jun-wang, ZOU Jie-rui, CONG Jian-bo, MA Lei, DONG Guo-fu, WU Ke. An EPR Modulation Magnetic Field Driving Device for in Vivo Tooth Dosimetry [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 365-371. |
[8] | ZHANG Yan-hui, ZHANG Hong-yan, ZHANG Hai-lu, ZHANG Peng-li, JIANG Hai-zhen, DENG Zong-wu, TAN Bo. A New Gd-Based T2-Weighted Magnetic Resonance Imaging Contrast Agent:Preparation and Application in Stem Cell Imaging [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 302-310. |
[9] | LIU Zhong-chun, CHENG Qian, LIU Nai-gui, ZHOU Yang, FANG Tao, ZHU Tao-tao, WANG Wei-min. NMR On-Line Measurement of Stress Sensitivity of Tight Matrix Limestone Cores in a Karstic Reservoir [J]. Chinese Journal of Magnetic Resonance, 2017, 34(2): 206-213. |
[10] | LIU Min,QIU Wen-qi,SUN Hui-jun*,CHEN Zhong. Progress in the Portable NMR Spectrometer [J]. Chinese Journal of Magnetic Resonance, 2014, 31(4): 504-514. |
[11] | ZHANG Ji1,2, LUO Qing1, GUO Qian-ni1, CHEN Shi-zhen1, ZHOU Xin1*. Magnetic Resonance Molecular Imaging with Hyperpolarized 129Xe [J]. Chinese Journal of Magnetic Resonance, 2013, 30(2): 279-292. |
[12] | YAO Xue-jun1;ZHU Guang1,2*. Sensitivity Improvement by Presaturation in 2D HOESY [J]. Chinese Journal of Magnetic Resonance, 2008, 25(4): 447-452. |
[13] | WU Ying;CHEN Tai-hong;LIU Guo-yue;REN Wei-yi. Theoretical Investigation of EPR Spectra and Optical Absorption Spectra for PZCST: VO2+ Crystal [J]. Chinese Journal of Magnetic Resonance, 2007, 24(2): 205-209. |
[14] | WU Ke, CONG Jian-Bo, ZHANG Qing-Jun, XIAN Hong, WANG Chang-Zhen, SUN Cun-Pu, ZHENG Ying-Guang, XU Jing, DONG Feng-Xia, SHEN Er-Zhong, XU Yu-Shu. DEVELOPMENT OF L BAND THREE DIMENSIONAL ESR IMAGING SYSTEM(Ⅴ)——System Configuration and Performance Evaluation [J]. Chinese Journal of Magnetic Resonance, 2004, 21(2): 159-164. |
[15] | Fang Dehui, Liu Dehai, Zheng Xiaoli, Zhang Bide. A PRECISION MARGINAL OSCILLATOR-TYPE NQR SPECTROMETER AND IT'S APPLICATION [J]. Chinese Journal of Magnetic Resonance, 1991, 8(1): 123-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||