Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (2): 151-161.doi: 10.11938/cjmr20233073cstr: 32225.14.cjmr20233073
• Articles • Previous Articles Next Articles
Dai Junlong1, He Cong1, Wu Jie1,*(), Bian Yun2,#(
)
Received:
2023-07-17
Published:
2024-06-05
Online:
2023-09-27
Contact:
*Tel: 021-55271116, E-mail: wujie3773@sina.com; #Tel: 021-31166666, E-mail: bianyun2012@foxmail.com.
CLC Number:
Dai Junlong, He Cong, Wu Jie, Bian Yun. Pancreatic Cystic Neoplasms Segmentation Network Combining Dual Decoding and Global Attention Upsampling Modules[J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 151-161.
Table 2
Comparison of Dice similarity coefficients between the model in different literature and the model in this paper
模型 | 数据来源 | 数据类型 | Dice/% |
---|---|---|---|
VA-3DUNet[ | NIH | 3D(CT) | 86.19±9.03 |
Attention U-Net[ | CT-150 | 3D(CT) | 84.00±8.70 |
Cascaded multitask 3-D fully convolutional networks[ | 82(CT) | 3D(CT) | 85.9±5.10 |
HSSN[ | MRI | 3D(MRI) | 85.7±2.3 |
PanKNet[ | Pancreas-MRI | 3D(MRI) | 77.46±8.62 |
ConResNet[ | NIH | 3D(CT) | 86.06 |
PNet-MSA[ | MRI-79 | 2D(MRI) | 80.7±7.40 |
Spatial aggregation of holistically-nested convolutional neural networks[ | NIH | 2D(CT) | 81.27±6.27 |
deep convolutional LSTM neural network[ | MRI-79 | 2D(MRI) | 80.5±6.70 |
RSTN[ | NIH | 2D(CT) | 84.50±4.97 |
TransUnet[ | MICCAI 2015 | 2D(CT) | 73.96 |
DGANet(本文模型) | 长海医院 | 2D(MRI) | 86.28±2.77 |
[1] | HUO L, HU X X, XIAO Q, et al. Automatic segmentation of breast and fibroglandular tissues in DCE-MR images based on nnU-Net[J]. Chinese J Magn Reson, 2021, 38(3): 367-380. |
霍璐, 胡晓欣, 肖勤, 等. 基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割[J]. 波谱学杂志, 2021, 38(3): 367-380.
doi: 10.11938/cjmr20212883 |
|
[2] | YAN S J, HAN Y S, TANG G Y. An improved level set algorithm for prostate region segmentation[J]. Chinese J Magn Reson, 2021, 38(3): 356-366. |
闫士举, 韩勇森, 汤光宇. 一种用于前列腺区域分割的改进水平集算法[J]. 波谱学杂志, 2021, 38(3): 356-366.
doi: 10.11938/cjmr20212885 |
|
[3] | WANG M, LI D. An automatic segmentation method for lung tumor based on improved region growing algorithm[J]. Diagnostics, 2022, 12(12): 2971. |
[4] | SULTANA F, SUFIAN A, DUTTA P. Evolution of image segmentation using deep convolutional neural network: A survey[J]. Knowl Based Syst, 2020, 201: 106062. |
[5] | JHA D, RIEGLER M A, JOHANSEN D, et al. Doubleu-net: A deep convolutional neural network for medical image segmentation[C]// 33rd International symposium on computer-based medical systems (CBMS). IEEE, 2020: 558-564. |
[6] | DOLZ J, GOPINATH K, YUAN J, et al. HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation[J]. IEEE T Med Imaging, 2018, 38(5): 1116-1126. |
[7] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18 th International Conference, Munich, Germany, Proceedings, Part III 18. Springer International Publishing, 2015: 234-241. |
[8] | CAI J, LU L, XING F, et al. Pancreas segmentation in CT and MRI images via domain specific network designing and recurrent neural contextual learning[J]. ArXiv: 1803.11303, 2018. |
[9] | OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: Learning where to look for the pancreas[J]. ArXiv: 1804.03999, 2018. |
[10] | WANG Y, GONG G, KONG D, et al. Pancreas segmentation using a dual-input V-mesh network[J]. Med Image Anal, 2021, 69: 101958. |
[11] | XUE J, HE K, NIE D, et al. Cascaded multitask 3-D fully convolutional networks for pancreas segmentation[J]. IEEE Trans Cybern, 2019, 51(4): 2153-2165. |
[12] | ASATURYAN H, THOMAS E L, FITZPATRICK J, et al. Advancing pancreas segmentation in multi-protocol mri volumes using hausdorff-sine loss function[C]// Machine Learning in Medical Imaging:10th International Workshop, 2019: 27-35. |
[13] | PROIETTO S F, BELLITTO G, IRMAKCI I, et al. Hierarchical 3D feature learning forpancreas segmentation[C]// Machine Learning in Medical Imaging: 12th International Workshop, 2021: 238-247. |
[14] | BI X L, LU M, XIAO B, et al. Pancreas segmentation based on dual-decoding U-Net[J]. J Softw, 2022, 33(5): 1947-1958. |
毕秀丽, 陆猛, 肖斌, 等. 基于双解码U型卷积神经网络的胰腺分割[J]. 软件学报, 2022, 33(5): 1947-1958. | |
[15] | LI Y, ZHANG X, CHEN D. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 1091-1100. |
[16] | LI H, XIONG P, AN J, et al. Pyramid attention network for semantic segmentation[J]. ArXiv: 1805.10180, 2018. |
[17] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the European conference on computer vision (ECCV). 2018: 3-19. |
[18] | ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans Med Imaging, 2019, 39(6): 1856-1867. |
[19] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. ArXiv: 1511.07122, 2015. |
[20] | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 2018: 1451-1460. |
[21] | WANG Y, ZHANG J, CUI H, et al. View adaptive learning for pancreas segmentation[J]. Biomed Signal Process Control, 2021, 66: 102347. |
[22] | ZHANG J, XIE Y, WANG Y, et al. Inter-slice context residual learning for 3D medical image segmentation[J]. IEEE Trans Med Imaging, 2020, 40(2): 661-672. |
[23] |
ROTH H R, LU L, LAY N, et al. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation[J]. Med Image Anal, 2018, 45: 94-107.
doi: S1361-8415(18)30021-5 pmid: 29427897 |
[24] | CAI J, LU L, XIE Y, et al. Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function[J]. ArXiv: 1707.04912, 2017. |
[25] | YU Q, XIE L, WANG Y, et al. Recurrent saliency transformation network: Incorporating multi-stage visual cues for small organ segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8280-8289. |
[26] | CHEN J, LU Y, YU Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[J]. ArXiv: 2102.04306, 2021. |
[27] | WANG H Z, ZHAO D, YANG L Q, et al. An approach for training data enrichment and batch labeling in AI+MRI aided diagnosis[J]. Chinese J Magn Reson, 2018, 35(4): 447-456. |
汪红志, 赵地, 杨丽琴, 等. 基于AI+MRI的影像诊断的样本增广与批量标注方法[J]. 波谱学杂志, 2018, 35(4): 447-456.
doi: 10.11938/cjmr20182658 |
[1] | NING Xinzhou, HUANG Zhen, CHEN Xiqu, LIU Xinjie, CHEN Gang, ZHANG Zhi, BAO Qingjia, LIU Chaoyang. Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 454-468. |
[2] | YANG Liming, WANG Yuanjun. Research Progress of Denoising Algorithms for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 341-361. |
[3] | YANG Yu, CHEN Bo, WU Liubin, LIN Enping, HUANG Yuqing, CHEN Zhong. Spectrum Reconstruction for Laplace NMR: From Handcraft Regularization to Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 191-208. |
[4] | CHANG Bo, SUN Haoyun, GAO Qingyu, WANG Lijia. Research Progress on Cardiac Segmentation in Different Modal Medical Images by Traditional Methods and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 224-244. |
[5] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[6] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[7] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
[8] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[9] | LU Qiqi, LIAN Zifeng, LI Jialong, SI Wenbin, MAI Zhaohua, FENG Yanqiu. Magnetic Resonance R2* Parameter Mapping of Liver Based on Self-supervised Deep Neural Network [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269. |
[10] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[11] | TIAN Hui, WU Jie, BIAN Yun, ZHANG Zhiwei, SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[12] | HUANG Min,LI Siyi,CHEN Junbo,ZHOU Dao. Progress of Magnetic Resonance Fingerprinting Technology and Its Clinical Application [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 207-219. |
[13] | QIAN Chengyi,WANG Yuanjun. Research Progress on Imaging Classification of Alzheimer’s Disease Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 220-238. |
[14] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
[15] | Meng CHEN, Chen GENG, Yu-xin LI, Dao-ying GENG, Yi-fang BAO, Ya-kang DAI. Automatic Detection for Cerebral Aneurysms in TOF-MRA Images Based on Fuzzy Label and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 267-277. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 205
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||