Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (4): 397-409.doi: 10.11938/cjmr20233058
• Articles • Previous Articles Next Articles
ZHOU Tianli1,2,ZHANG Dian3,WU Jizhi3,JIA Huihui3,CHANG Yan2,SHENG Mao3,*(),YANG Xiaodong1,2,#()
Received:
2023-03-06
Published:
2023-12-05
Online:
2023-03-31
Contact:
* Tel: 13915518071, E-mail: CLC Number:
ZHOU Tianli, ZHANG Dian, WU Jizhi, JIA Huihui, CHANG Yan, SHENG Mao, YANG Xiaodong. Application of MRI-based Finite Element Modeling and Analysis in Periacetabular Osteotomy[J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 397-409.
[1] | YANG S, ZUSMAN N, LIEBERMAN E, et al. Developmental dysplasia of the hip[J]. Pediatrics, 2019, 143(1). |
[2] | Wu M D, Feng J, Jia H H, et al. MRI-based morphological quantification of developmental dysplasia of the hip in children[J]. Chinese J Magn Reson, 2020, 37(4): 434-446. |
吴明娣, 冯洁, 贾慧惠, 等. 儿童发育性髋关节脱位的磁共振形态学定量[J]. 波谱学杂志, 2020, 37(4): 434-446. | |
[3] |
GANZ R, KLAUE K, VINH T S, et al. A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results[J]. Clin Orthop Relat R, 1988, (232): 26-36.
pmid: 3383491 |
[4] |
HAKIM N S, KING A I. A three dimensional finite element dynamic response analysis of a vertebra with experimental verification[J]. J Biomech, 1979, 12(4): 277-285 & 287-292.
pmid: 468853 |
[5] |
TANNE K, SAKUDA M. Biomechanical and clinical changes of the craniofacial complex from orthopedic maxillary protraction[J]. Angle Orthod, 1991, 61(2): 145-152.
pmid: 2064072 |
[6] | GAMBOA A, COSA A, BENET F, et al. A semiautomatic segmentation method, solid tissue classification and 3D reconstruction of mandible from computed tomography imaging for biomechanical analysis[C]// Barcelona, SPAIN:9th IEEE International Symposium on Biomedical Imaging (ISBI) - From Nano to Macro, 2012: 1483-1486. |
[7] | WANG Y C, YANG D, ZHAO L H, et al. Finite element analysis of mechanical characteristics of internal fixation for treatment of proximal femoral osteolytic lesions in children[J]. Orthop Surg, 2023, 10.1111/os.13591. |
[8] |
ZHAO X, CHOSA E, TOTORIBE K, et al. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis[J]. J Orthop Sci, 2010, 15(5): 632-640.
doi: 10.1007/s00776-010-1511-z pmid: 20953924 |
[9] |
LEE K J, PARK S J, LEE S J, et al. Biomechanical study on the efficacy of the periacetabular osteotomy using patient-specific finite element analysis[J]. Int J Precis Eng Man, 2015, 16(4): 823-829.
doi: 10.1007/s12541-015-0108-z |
[10] |
LIU L, ECKER T M, SCHUMANN S, et al. Evaluation of constant thickness cartilage models vs. patient specific cartilage models for an optimized computer-assisted planning of periacetabular osteotomy[J]. PLoS One, 2016, 11(1): e0146452.
doi: 10.1371/journal.pone.0146452 |
[11] | PARK S J, LEE S J, CHEN W M, et al. Computer-assisted optimization of the acetabular rotation in periacetabular osteotomy using patient’s anatomy-specific finite element analysis[J]. Appl Bionics Biomech, 2018: 9730525. |
[12] |
KITAMURA K, FUJII M, IWAMOTO M, et al. Effect of coronal plane acetabular correction on joint contact pressure in periacetabular osteotomy: a finite-element analysis[J]. BMC Musculoskelet Disord, 2022, 23(1): 48.
doi: 10.1186/s12891-022-05005-5 |
[13] | TIAN H, XU P, LU N, et al. The effect of pelvic modeling on outcome in preoperative planning for bernese acetabular osteotomy[J]. Journal of Medical Biomechanics, 2020, 35(6): 712-717. |
田昊, 许平, 鲁宁, 等. Bernese髋臼截骨术术前规划中骨盆建模对结果的影响[J]. 医用生物力学, 2020, 35(6): 712-717. | |
[14] | ZHANG L L, WANG X Y, CHEN X D. Study on finite element analysis method for the pre-operative planning of bernese periacetabular osteotomy[J]. Journal of Biomedical Engineering, 2016, 33(3): 455-460. |
张琳琳, 王旭义, 陈晓东. Bernese髋臼周围截骨术术前规划的有限元分析方法研究[J]. 生物医学工程学杂志, 2016, 33(3): 455-460. | |
[15] |
STARLY B, FANG Z, SUN W, et al. Three-dimensional reconstruction for medical-CAD modeling[J]. Computer-aided Design and Applications, 2005, 2(1-4): 431-438.
doi: 10.1080/16864360.2005.10738392 |
[16] | YANG Z G, GAN L, YE J X. Construction and stability of finite element models of distal tibial fractures[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(17): 2540-2545. |
杨志刚, 甘霖, 叶俊星. 胫骨远端骨折有限元模型的建立及稳定性分析[J]. 中国组织工程研究, 2016, 20(17): 2540-2545. | |
[17] |
SOWMIANARAYANAN S, CHANDRASEKARAN A, KUMAR R K. Finite element analysis of a subtrochanteric fractured femur with dynamic hip screw, dynamic condylar screw, and proximal femur nail implants - a comparative study[J]. P I Mech Eng H, 2008, 222(1): 117-127.
doi: 10.1243/09544119JEIM156 |
[18] |
AKRAMI M, CRAIG K, DIBAJ M, et al. A three-dimensional finite element analysis of the human hip[J]. J Med Eng Technol, 2018, 42(7): 546-552.
doi: 10.1080/03091902.2019.1576795 pmid: 30875263 |
[19] |
BERGMANN G, DEURETZBACHER G, HELLER M, et al. Hip contact forces and gait patterns from routine activities[J]. J Biomech, 2001, 34(7): 859-871.
doi: 10.1016/s0021-9290(01)00040-9 pmid: 11410170 |
[20] |
BERGMANN G, GRAICHEN F, ROHLMANN A, et al. Hip joint forces during load carrying[J]. Clin Orthop Relat R, 1997, (335): 190-201.
pmid: 9020218 |
[21] |
BAY B K, HAMEL A J, OLSON S A, et al. Statically equivalent load and support conditions produce different hip joint contact pressures and periacetabular strains[J]. J Biomech, 1997, 30(2): 193-196.
pmid: 9001941 |
[22] |
PHILLIPS A T M, PANKAJ P, HOWIE C R, et al. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[J]. Med Eng Phys, 2007, 29(7): 739-748.
pmid: 17035063 |
[23] |
ZOU Z, CHAVEZ-ARREOLA A, MANDAL P, et al. Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis[J]. J Orthop Res, 2013, 31(3): 472-479.
doi: 10.1002/jor.22245 pmid: 23097237 |
[24] |
GENDA E, IWASAKI N, LI G A, et al. Normal hip joint contact pressure distribution in single-leg standing—effect of gender and anatomic parameters[J]. J Biomech, 2001, 34(7): 895-905.
doi: 10.1016/S0021-9290(01)00041-0 |
[25] |
HARRIS M D, ANDERSON A E, HENAK C R, et al. Finite element prediction of cartilage contact stresses in normal human hips[J]. J Orthop Res, 2012, 30(7): 1133-1139.
doi: 10.1002/jor.22040 pmid: 22213112 |
[26] | AKRAMI M, QIAN Z, ZOU Z, et al. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions[J]. Biomech Mode Mechan, 2018, 17(2): 559-576. |
[27] |
WU Z, CHEN S, LI Y, et al. Effect of centre-edge angle on clinical and quality of life outcomes after arthroscopic acetabular labral debridement[J]. Int Orthop, 2016, 40(7): 1427-1432.
doi: 10.1007/s00264-015-2923-3 pmid: 26220148 |
[28] | KOLBER M J, CHEATHAM S W. Orthopedic management of the hip and pelvis[M]. St. Louis: Elsevier Health Sciences, 2015. |
[29] |
WU G, SIEGLER S, ALLARD P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - part 1: ankle, hip, and spine[J]. J Biomech, 2002, 35(4): 543-548.
doi: 10.1016/S0021-9290(01)00222-6 |
[30] |
XIONG B, YANG P, LIN T, et al. Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of “gait-musculoskeletal system-finite element”[J]. J Orthop Surg Res, 2022, 17(1): 267.
doi: 10.1186/s13018-022-03094-5 |
[31] | MA Y, XING C J, XIAO L. Knee joint image segmentation and model construction based on cascaded network[J]. Chinese J Magn Reson, 2022, 39(2): 184-195. |
马岩, 邢藏菊, 肖亮. 基于级联网络的膝关节图像分割与模型构建[J]. 波谱学杂志, 2022, 39(2): 184-195. |
[1] | CHEN Mengying, WU Yupeng, PANG Qifan, ZHONG Haodong, LI Gaiying, LI Jianqi. Simultaneously Neuromelanin-sensitive Imaging and Quantitative Susceptibility Mapping in the Whole Brain [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 385-396. |
[2] | REN Hongjin, MA Yan, XIAO Liang. Knee Joint Model Construction and Local Specific Absorption Rate Estimation Based on Generative Adversarial Networks [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 410-422. |
[3] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[4] | FANG Yi, WAN Qian, YUAN Jiawen, LIN Shaoqiang, LI Ye, LIU Xin, ZHENG Hairong, ZOU Chao. Comparison Study of the Metabolic Characteristics of Three Kinds of Deuterium-labeled Glucose in Rat Glioma Cells [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 239-245. |
[5] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[6] | ZHANG Tianning,LEI Zhanzhi,XIAO Liang. Design of a Data Transmission System for Magnetic Resonance Imaging Based on SerialLite II Protocol [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 179-191. |
[7] | TIAN Yu,ZHOU Chen,ZHANG Yanan,WANG Peng,ZHANG Caiyun,SONG Tianwei,QIAN Junchao. In vivo MR Vessel Size Imaging of Brain Vascular Plasticity After Experimental Spinal Cord Injury [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 158-168. |
[8] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
[9] | LI Pan,FANG Delei,ZHANG Junxia,MA Debei. Magnetic Resonance Compatibility Analysis Method of Surgical Robotic System Based on Image Quality Evaluation [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 79-91. |
[10] | HAN Bing,XU Jing,WANG Yuanjun,WANG Zhongling. Classification of BI-RADS 3-5 Breast Lesions Based on MRI Radiomics [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 52-67. |
[11] | Yi-feng YANG, Zhang-xuan QI, Sheng-dong NIE. Differentiation of Benign and Malignant Breast Lesions Based on Multimodal MRI and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 401-412. |
[12] | Lan DENG,Yuan-jun WANG. DTI Brain Template Construction Based on Gaussian Averaging [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 413-427. |
[13] | Xiao-ming CHEN, Xiu-chao ZHAO, Xian-ping SUN, Jun-shuai XIE, Hai-dong LI, Ye-qing HAN, Xiao-ling LIU, Qi CHEN, Xin ZHOU. Study on the Automatic Accumulation-thawing Device of Hyperpolarized 129Xe [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 316-326. |
[14] | Xian-xin QIU,Xu HAN,Yao WANG,Wei-na DING,Ya-wen SUN,Yan ZHOU,Hao LEI,Fu-chun LIN. The Alteration of Rich Club in Brain Functional Network in Internet Gaming Disorder [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 258-266. |
[15] | Min-xiong ZHOU, Hui-ting ZHANG, Yi-da WANG, Guang YANG, Xu-feng YAO, An-kang GAO, Jing-liang CHENG, Jie BAI, Xu YAN. Evaluation of the Influence of Data Sampling Schemes on Neural Diffusion Models [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 220-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||