Chinese Journal of Magnetic Resonance ›› 2023, Vol. 40 ›› Issue (4): 410-422.doi: 10.11938/cjmr20233053
• Articles • Previous Articles Next Articles
REN Hongjin,MA Yan,XIAO Liang*()
Received:
2023-01-15
Published:
2023-12-05
Online:
2023-06-25
CLC Number:
REN Hongjin, MA Yan, XIAO Liang. Knee Joint Model Construction and Local Specific Absorption Rate Estimation Based on Generative Adversarial Networks[J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 410-422.
Fig. 2
The architecture of the proposed CGAN. The countermeasure loss is calculated according to the 0/1 matrix of the output of the discriminator network. The error is propagated back to the generator network and the discriminator network, and the L1 loss is calculated by using the artificially labeled image and the generating result of the generator network, transmitting back to the generator network, and the network parameters are continuously adjusted according to the gradient descent principle
Fig. 4
The attention modules used in generator network. The attention coefficient matrix α is calculated by using the decoded partial characteristic graph dl and the coded partial characteristic graph el-1 as the input, el-1 multiplies the attention coefficient matrix α pixel by pixel to select the focus region
Table 1
Evaluation indexes of the segmentation results of various methods (the proposed method, U-Net, Attention U-Net compared with the manual labeling results)
分割方法 | 评价指标 | 肌肉 | 脂肪 | 骨骼 |
---|---|---|---|---|
所提方法 | DCC | 0.8798 | 0.9135 | 0.9022 |
TPR | 0.8915 | 0.9198 | 0.9114 | |
U-Net | DCC | 0.8472 | 0.9040 | 0.9006 |
TPR | 0.8841 | 0.8785 | 0.8921 | |
Attention U-Net | DCC | 0.8578 | 0.9022 | 0.9058 |
TPR | 0.9059 | 0.8611 | 0.8991 |
[1] | LIU X, XU H W, JIANG T, et al. MRI and 18F-FDG PET/CT findings of a giant cell tumor of the tendon sheath of the knee joint (pigmented villonodular synovitis): a case report and literature review[J]. Hell J Nucl Med, 2021, 24(2): 149-154. |
[2] | YANG W H. The development of ultra-high field magnetic resonance imaging[J]. Physics, 2019, 48(4): 227-236. |
杨文晖. 磁共振成像发展与超高场磁共振成像技术[J]. 物理, 2019, 48(4): 227-236. | |
[3] | WANG Y S, DENG A Q, MAO J L, et al. Automatic segmentation of knee joint synovial magnetic resonance images based on 3D VNetTrans[J]. Chinese J Magn Reson, 2022, 39(3): 303-315. |
王颖珊, 邓奥琦, 毛瑾玲, 等. 基于3D VNetTrans的膝关节滑膜磁共振图像自动分割[J]. 波谱学杂志, 2022, 39(3): 303-315. | |
[4] |
PADORMO F, BEQIRI A, HAJNAL J V, et al. Parallel transmission for ultrahigh-field imaging[J]. NMR Biomed, 2016, 29(9): 1145-1161.
doi: 10.1002/nbm.3313 pmid: 25989904 |
[5] |
YETISIR F, ABACI TURK E, GUERIN B, et al. Safety and imaging performance of two-channel RF shimming for fetal MRI at 3 T[J]. Magn Reson Med, 2021, 86(5): 2810-2821.
doi: 10.1002/mrm.28895 |
[6] | ZENG Q, GUO R, ZHENG J, et al. Impacts of RF shimming on local SAR caused by MRI 3 T birdcage coil near femoral plate implants[C]// IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA: IEEE, 2017: 1005-1006. |
[7] | GAGLIARDI V, RETICO A, BIAGI L, et al. Subject-specific knee SAR prediction using a degenerate birdcage at 7 T[C]// IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy: IEEE, 2018: 1-5. |
[8] |
LIU W, WANG H, ZHANG P, et al. Statistical evaluation of radiofrequency exposure during magnetic resonant imaging: Application of whole-body individual human model and body motion in the coil[J]. Int J Env Res Pub He, 2019, 16(6): 1069.
doi: 10.3390/ijerph16061069 |
[9] |
STEENSMA B R, MELIADÒ E F, LUIJTEN P, et al. SAR and temperature distributions in a database of realistic human models for 7 T cardiac imaging[J]. NMR Biomed, 2021, 34(7): e4525.
doi: 10.1002/nbm.4525 pmid: 33955061 |
[10] |
CARLUCCIO G, AKGUN C, VAUGHAN J T, et al. Temperature-based MRI safety simulations with a limited number of tissues[J]. Magn Reson Med, 2021, 86(1): 543-550.
doi: 10.1002/mrm.28693 pmid: 33547673 |
[11] |
VAN DEN BERGEN B, VAN DEN BERG C A, BARTELS L W, et al. 7 T body MRI: B-1 shimming with simultaneous SAR reduction[J]. Phys Med Biol, 2007, 52(17): 5429.
doi: 10.1088/0031-9155/52/17/022 |
[12] |
DE BUCK M H, JEZZARD P, JEONG H, et al. An investigation into the minimum number of tissue groups required for 7 T in-silico parallel transmit electromagnetic safety simulations in the human head[J]. Magn Reson Med, 2021, 85(2): 1114-1122.
doi: 10.1002/mrm.v85.2 |
[13] |
WOLF S, DIEHL D, GEBHARDT M, et al. SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed?[J] Magn Reson Med, 2013, 69(4): 1157-1168.
doi: 10.1002/mrm.24329 pmid: 22611018 |
[14] |
SENGAR S S, MEULENGRACHT C, BOESEN M P, et al. Multi-planar 3D knee MRI segmentation via UNet inspired architectures[J]. Int J Imag Syst Tech, 2023, 33(3): 985-998.
doi: 10.1002/ima.v33.3 |
[15] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Commun Acm, 2020, 63(11): 139-144.
doi: 10.1145/3422622 |
[16] | CHANG X, CAI X, YANG G, et al. Applications of generative adversarial networks in medical image processing[J]. Chinese J Magn Reson, 2022, 39(3): 366-380. |
常晓, 蔡昕, 杨光, 等. 生成对抗网络在医学图像转换领域的应用[J]. 波谱学杂志, 2022, 39(3): 366-380. | |
[17] | CHEN Y, SHI F, CHRISTODOULOU A G, et al. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network[C]// Medical Image Computing and Computer Assisted Intervention-MICCAI 2018: 21st International Conference, Granada, Spain:Springer, 2018: 91-99. |
[18] |
KANG E, KOO H J, YANG D H, et al. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography[J]. Med Phys, 2019, 46(2): 550-562.
doi: 10.1002/mp.13284 pmid: 30449055 |
[19] | LAHIRI A, AYUSH K, KUMAR BISWAS P, et al. Generative adversarial learning for reducing manual annotation in semantic segmentation on large scale miscroscopy images: Automated vessel segmentation in retinal fundus image as test case[C]// Proceedings of the IEEE conference on computer vision and pattern recognition workshops, Honolulu, HI, USA: IEEE, 2017: 42-48. |
[20] |
GAJ S, YANG M, NAKAMURA K, et al. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks[J]. Magn Reson Med, 2020, 84(1): 437-449.
doi: 10.1002/mrm.28111 pmid: 31793071 |
[21] | ZHANG L, GOOYA A, FRANGI A F. Semi-supervised assessment of incomplete LV coverage in cardiac MRI using generative adversarial nets[C]// International Workshop on Simulation and Synthesis in Medical Imaging. Cham: Springer, 2017: 61-68. |
[22] | MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014. |
[23] | MA Y, XING C J, XIAO L. Knee joint image segmentation and model construction based on cascaded network[J]. Chinese J Magn Reson, 2022, 39(2): 184-195. |
马岩, 邢藏菊, 肖亮. 基于级联网络的膝关节图像分割与模型构建[J]. 波谱学杂志, 2022, 39(2): 184-195. | |
[24] | SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention gated networks: Learning to leverage salient regions in medical images[J]. Med Image Anal, 2019, 53197-207. |
[25] |
LEE J, GEBHARDT M, WALD L L, et al. Local SAR in parallel transmission pulse design[J]. Magn Reson Med, 2012, 67(6): 1566-1578.
doi: 10.1002/mrm.23140 pmid: 22083594 |
[26] |
MILSHTEYN E, GURYEV G, TORRADO-CARVAJAL A, et al. Individualized SAR calculations using computer vision-based MR segmentation and a fast electromagnetic solver[J]. Magn Reson Med, 2021, 85(1): 429-443
doi: 10.1002/mrm.v85.1 |
[27] |
HARDY B M, BANIK R, YAN X Q, et al. Bench to bore ramifications of inter-subject head differences on RF shimming and specific absorption rates at 7 T[J]. Magn Reson Imaging, 2022, 92: 187-196.
doi: 10.1016/j.mri.2022.07.009 |
[28] |
CHRIST A, KAINZ W, HAHN E G, et al. The Virtual Family—development of surface-based anatomical models of two adults and two children for dosimetric simulations[J]. Phys Med Biol, 2009, 55(2): N23.
doi: 10.1088/0031-9155/55/2/N01 |
[1] | ZHOU Tianli, ZHANG Dian, WU Jizhi, JIA Huihui, CHANG Yan, SHENG Mao, YANG Xiaodong. Application of MRI-based Finite Element Modeling and Analysis in Periacetabular Osteotomy [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 397-409. |
[2] | CHEN Mengying, WU Yupeng, PANG Qifan, ZHONG Haodong, LI Gaiying, LI Jianqi. Simultaneously Neuromelanin-sensitive Imaging and Quantitative Susceptibility Mapping in the Whole Brain [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 385-396. |
[3] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[4] | FANG Yi, WAN Qian, YUAN Jiawen, LIN Shaoqiang, LI Ye, LIU Xin, ZHENG Hairong, ZOU Chao. Comparison Study of the Metabolic Characteristics of Three Kinds of Deuterium-labeled Glucose in Rat Glioma Cells [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 239-245. |
[5] | ZHAO Xin, ZHANG Xin, LI Xinjie, WANG Hongkai. Multimodal Glioma Segmentation with Fusion of Multiple Self-attention and Deformable Convolutions [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 280-292. |
[6] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[7] | ZHANG Tianning,LEI Zhanzhi,XIAO Liang. Design of a Data Transmission System for Magnetic Resonance Imaging Based on SerialLite II Protocol [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 179-191. |
[8] | TIAN Yu,ZHOU Chen,ZHANG Yanan,WANG Peng,ZHANG Caiyun,SONG Tianwei,QIAN Junchao. In vivo MR Vessel Size Imaging of Brain Vascular Plasticity After Experimental Spinal Cord Injury [J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 158-168. |
[9] | SHI Weicheng,JIN Zhaoyang,YE Zheng. Fast Multi-channel Magnetic Resonance Imaging Based on PCAU-Net [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. |
[10] | LI Pan,FANG Delei,ZHANG Junxia,MA Debei. Magnetic Resonance Compatibility Analysis Method of Surgical Robotic System Based on Image Quality Evaluation [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 79-91. |
[11] | HAN Bing,XU Jing,WANG Yuanjun,WANG Zhongling. Classification of BI-RADS 3-5 Breast Lesions Based on MRI Radiomics [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 52-67. |
[12] | Yi-feng YANG, Zhang-xuan QI, Sheng-dong NIE. Differentiation of Benign and Malignant Breast Lesions Based on Multimodal MRI and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 401-412. |
[13] | Lan DENG,Yuan-jun WANG. DTI Brain Template Construction Based on Gaussian Averaging [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 413-427. |
[14] | Xian-xin QIU,Xu HAN,Yao WANG,Wei-na DING,Ya-wen SUN,Yan ZHOU,Hao LEI,Fu-chun LIN. The Alteration of Rich Club in Brain Functional Network in Internet Gaming Disorder [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 258-266. |
[15] | Ying-shan WANG, Ao-qi DENG, Jin-ling MAO, Zhong-qi ZHU, Jie SHI, Guang YANG, Wei-wei MA, Qing LU, Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||