1 |
CORTAZAR P, ZHANG L, UNTCH M, et al Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384 (9938): 164- 172.
doi: 10.1016/S0140-6736(13)62422-8
|
2 |
刘璐, 郑新宇 乳腺良性病变的组织学分型及其乳腺癌风险[J]. 中国实用外科杂志, 2016, 36 (7): 720- 724.
|
|
LIU L, ZHENG X Y Histologic types of benign breast disease and the risk of breast cancer[J]. Chinese Journal of Practical Surgery, 2016, 36 (7): 720- 724.
|
3 |
GIGER M L, KARSSEMEIJER N, SCHNABEL J A Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer[J]. Annu Rev Biomed Eng, 2013, 15, 327- 357.
doi: 10.1146/annurev-bioeng-071812-152416
|
4 |
MANI S, CHEN Y K, ARLINGHAUS L R, et al. Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning[C]// AMIA Annu Symp Proc, 2011: 868-877.
|
5 |
LO GULLO R, ESKREIS-WINKLER S, MORRIS E A, et al Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy[J]. Breast, 2020, 49, 115- 122.
doi: 10.1016/j.breast.2019.11.009
|
6 |
ZHOU Y J, XU J X, LIU Q G, et al A radiomics approach with CNN for shear-wave elastography breast tumor classification[J]. IEEE Trans Biomed Eng, 2018, 65 (9): 1935- 1942.
doi: 10.1109/TBME.2018.2844188
|
7 |
TANAKA H, CHIU S W, WATANABE T, et al Computer-aided diagnosis system for breast ultrasound images using deep learning[J]. Phys Med Biol, 2019, 64 (23): 235013.
doi: 10.1088/1361-6560/ab5093
|
8 |
SAMALA R K, CHAN H P, HADJIISKI L, et al Breast cancer diagnosis in digital breast tomosynthesis: Effects of training sample size on multi-stage transfer learning using deep neural nets[J]. IEEE Trans Biomed Eng, 2019, 38 (3): 686- 696.
|
9 |
DALMIS M U, GUBERN-MERIDA A, VREEMANN S, et al Artificial intelligence-based classification of breast lesions imaged with a multiparametric breast mri protocol with ultrafast DCE-MRI, T2, and DWI[J]. Invest Radiol, 2019, 54 (6): 325- 332.
doi: 10.1097/RLI.0000000000000544
|
10 |
SARITAS I Prediction of breast cancer using artificial neural networks[J]. J Med Syst, 2012, 36 (5): 2901- 2907.
doi: 10.1007/s10916-011-9768-0
|
11 |
霍璐, 胡晓欣, 肖勤, 等 基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割[J]. 波谱学杂志, 2021, 38 (3): 367- 380.
|
|
HUO L, HU X X, XIAO Q, et al Automatic segmentation of breast and fibroglandular tissues in DCE-MR images based on nnU-Net[J]. Chinese J Magn Reson, 2021, 38 (3): 367- 380.
|
12 |
ANTROPOVA N, HUYNH B Q, GIGER M L A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets[J]. Med Phys, 2017, 44 (10): 5162- 5171.
doi: 10.1002/mp.12453
|
13 |
刘可文, 刘紫龙, 汪香玉, 等 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 2020, 37 (2): 152- 161.
|
|
LIU K W, LIU Z L, WANG X Y, et al Prostate cancer diagnosis based on cascaded convolutional neural networks[J]. Chinese J Magn Reson, 2020, 37 (2): 152- 161.
|
14 |
严冬, 陈再彦 MR动态增强显像在乳腺肿瘤良恶性鉴别诊断中的价值分析[J]. 影像研究与医学应用, 2020, 4 (9): 72- 73.
|
|
YAN D, CHEN Z Y Value analysis of MR dynamic enhanced imaging in differential diagnosis of benign and malignant breast tumors[J]. Journal of Imaging Research and Medical, 2020, 4 (9): 72- 73.
|
15 |
SILBERMAN H, SHETH P A, PARISKY Y R, et al Modified bi-rads scoring of breast imaging findings improves clinical judgment[J]. Breast J, 2015, 21 (6): 642- 650.
doi: 10.1111/tbj.12492
|
16 |
PAN S J, YANG Q J I T O K, ENGINEERING D A survey on transfer learning[J]. IEEE T Knowl Data En, 2009, 22 (10): 1345- 1359.
|
17 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2818-2826.
|
18 |
SINGH V K, ROMANI S, RASHWAN H A, et al. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018: 833-840.
|
19 |
NUNES A P, SILVA A C, DE PAIVA A C, et al Detection of masses in mammographic images using geometry, simpson's diversity index and SVM[J]. Int J Signal Imaging, 2010, 3 (1): 40- 51.
|
20 |
HUYNH B Q, LI H, GIGER M L Digital mammographic tumor classification using transfer learning from deep convolutional neural networks[J]. J Med Imaging, 2016, 3 (3): 034501.
|
21 |
DING X H, GUO Y C, DING G G, et al. ACNet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, 1911-1920.
|
22 |
SAINI R, JHA N K, DAS B, et al. Ulsam: Ultra-lightweight subspace attention module for compact convolutional neural networks[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, 1627-1636.
|
23 |
张丽娜, 赵作伟, 宋清伟, 等 应用计算机辅助诊断技术评价血流动力学特征在乳腺MRI中的价值[J]. 中华放射学杂志, 2012, 11, 998- 1001.
|
|
ZHANG L N, ZHAO Z W, ZHU Q W, et al Values of kinetic features measured by computer-aided diagnosis for breast MRI[J]. Chinese Journal of Radiology, 2012, 11, 998- 1001.
|
24 |
GUO Y, CAI Y Q, CAI Z L, et al Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging[J]. J Magn Reson Imaging, 2002, 16 (2): 172- 178.
|