Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (4): 401-412.doi: 10.11938/cjmr20222969
• Articles • Previous Articles Next Articles
Yi-feng YANG,Zhang-xuan QI,Sheng-dong NIE*()
Received:
2022-01-04
Online:
2022-12-05
Published:
2022-03-15
Contact:
Sheng-dong NIE
E-mail:nsd4647@163.com
CLC Number:
Yi-feng YANG, Zhang-xuan QI, Sheng-dong NIE. Differentiation of Benign and Malignant Breast Lesions Based on Multimodal MRI and Deep Learning[J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 401-412.
Table 3
The parameter setting of the proposed AC_Ulsam_CNN structure
# | 输入层 | 输入尺寸 | 卷积核尺寸 | 通道数 | 步长 | 输出尺寸 |
(1) | Conv1+BN+LeakyReLU | 150 × 150 × 3 | 3 × 3 | 16 | 1 | 150 × 150 × 16 |
(2) | Conv2+BN+LeakyReLU | 150 × 150 × 16 | 1 × 1 | 8 | 1 | 150 × 150 × 8 |
(3) | Conv3+BN+LeakyReLU | 150 × 150 × 8 | 3 × 3 | 8 | 1 | 150 × 150 × 8 |
(4) | Conv4+BN+LeakyReLU | 150 × 150 × 8 | 1 × 1 | 16 | 1 | 150 × 150 × 16 |
(5) | Conv5+BN+LeakyReLU | 150 × 150 × 16 | 1 × 1 | 16 | 1 | 150 × 150 × 16 |
(6) | Add1 | 150 × 150 × 16 | - | - | - | 150 × 150 × 16 |
(7) | Pool1 | 150 × 150 × 16 | 3 × 3 | - | 3 | 50 × 50 × 16 |
(8) | Conv6 | 50 × 50 × 16 | 1 × 1 | 8 | 1 | 50 × 50 × 8 |
(9) | AC Block1 | 50 × 50 × 8 | - | 8 | - | 50 × 50 × 16 |
(10) | Conv7 | 50 × 50 × 16 | 1 × 1 | 32 | 1 | 50 × 50 × 32 |
(11) | Conv8 | 50 × 50 × 16 | 1 × 1 | 32 | 1 | 50 × 50 × 32 |
(12) | Add2 | 50 × 50 × 32 | - | - | - | 50 × 50 × 32 |
(13) | Pool2 | 50 × 50 × 32 | 3 × 3 | - | 3 | 16 × 16 × 32 |
(14) | Conv9 | 16 × 16 × 32 | 1 × 1 | 32 | 1 | 16 × 16 × 32 |
(15) | AC Block2 | 16 × 16 × 32 | - | 32 | - | 16 × 16 × 64 |
(16) | Conv10 | 16 × 16 × 64 | 1 × 1 | 128 | 1 | 16 × 16 × 128 |
(17) | Conv11 | 50 × 50 × 32 | 3 × 3 | 16 | 3 | 16 × 16 × 16 |
(18) | Conv12 | 16 × 16 × 32 | 1 × 1 | 128 | 1 | 16 × 16 × 128 |
(19) | Add3 | 16 × 16 × 128 | - | - | - | 16 × 16 × 128 |
(20) | Concatenate1 | 16 × 16 × 128 16 × 16 × 16 | - | - | - | 16 × 16 × 144 |
(21) | Ulsam Block1 | 16 × 16 × 144 | - | - | - | 16 × 16 × 144 |
(22) | Ulsam Block2 | 16 × 16 × 144 | - | - | - | 16 × 16 × 144 |
(23) | Concatenate2 | 16 × 16 × 144 16 × 16 × 144 | - | - | - | 16 × 16 × 288 |
(24) | Conv13+BN+LeakyReLU | 16 × 16 × 288 | 1 × 1 | 128 | 1 | 16 × 16 × 128 |
- | GAP | 16 × 16 × 128 | - | - | - | 4096 |
- | Dense | 4096 | - | - | - | 16 |
- | Sigmoid | 16 | - | - | - | 1 |
1 |
CORTAZAR P, ZHANG L, UNTCH M, et al Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384 (9938): 164- 172.
doi: 10.1016/S0140-6736(13)62422-8 |
2 | 刘璐, 郑新宇 乳腺良性病变的组织学分型及其乳腺癌风险[J]. 中国实用外科杂志, 2016, 36 (7): 720- 724. |
LIU L, ZHENG X Y Histologic types of benign breast disease and the risk of breast cancer[J]. Chinese Journal of Practical Surgery, 2016, 36 (7): 720- 724. | |
3 |
GIGER M L, KARSSEMEIJER N, SCHNABEL J A Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer[J]. Annu Rev Biomed Eng, 2013, 15, 327- 357.
doi: 10.1146/annurev-bioeng-071812-152416 |
4 | MANI S, CHEN Y K, ARLINGHAUS L R, et al. Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning[C]// AMIA Annu Symp Proc, 2011: 868-877. |
5 |
LO GULLO R, ESKREIS-WINKLER S, MORRIS E A, et al Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy[J]. Breast, 2020, 49, 115- 122.
doi: 10.1016/j.breast.2019.11.009 |
6 |
ZHOU Y J, XU J X, LIU Q G, et al A radiomics approach with CNN for shear-wave elastography breast tumor classification[J]. IEEE Trans Biomed Eng, 2018, 65 (9): 1935- 1942.
doi: 10.1109/TBME.2018.2844188 |
7 |
TANAKA H, CHIU S W, WATANABE T, et al Computer-aided diagnosis system for breast ultrasound images using deep learning[J]. Phys Med Biol, 2019, 64 (23): 235013.
doi: 10.1088/1361-6560/ab5093 |
8 | SAMALA R K, CHAN H P, HADJIISKI L, et al Breast cancer diagnosis in digital breast tomosynthesis: Effects of training sample size on multi-stage transfer learning using deep neural nets[J]. IEEE Trans Biomed Eng, 2019, 38 (3): 686- 696. |
9 |
DALMIS M U, GUBERN-MERIDA A, VREEMANN S, et al Artificial intelligence-based classification of breast lesions imaged with a multiparametric breast mri protocol with ultrafast DCE-MRI, T2, and DWI[J]. Invest Radiol, 2019, 54 (6): 325- 332.
doi: 10.1097/RLI.0000000000000544 |
10 |
SARITAS I Prediction of breast cancer using artificial neural networks[J]. J Med Syst, 2012, 36 (5): 2901- 2907.
doi: 10.1007/s10916-011-9768-0 |
11 | 霍璐, 胡晓欣, 肖勤, 等 基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割[J]. 波谱学杂志, 2021, 38 (3): 367- 380. |
HUO L, HU X X, XIAO Q, et al Automatic segmentation of breast and fibroglandular tissues in DCE-MR images based on nnU-Net[J]. Chinese J Magn Reson, 2021, 38 (3): 367- 380. | |
12 |
ANTROPOVA N, HUYNH B Q, GIGER M L A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets[J]. Med Phys, 2017, 44 (10): 5162- 5171.
doi: 10.1002/mp.12453 |
13 | 刘可文, 刘紫龙, 汪香玉, 等 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 2020, 37 (2): 152- 161. |
LIU K W, LIU Z L, WANG X Y, et al Prostate cancer diagnosis based on cascaded convolutional neural networks[J]. Chinese J Magn Reson, 2020, 37 (2): 152- 161. | |
14 | 严冬, 陈再彦 MR动态增强显像在乳腺肿瘤良恶性鉴别诊断中的价值分析[J]. 影像研究与医学应用, 2020, 4 (9): 72- 73. |
YAN D, CHEN Z Y Value analysis of MR dynamic enhanced imaging in differential diagnosis of benign and malignant breast tumors[J]. Journal of Imaging Research and Medical, 2020, 4 (9): 72- 73. | |
15 |
SILBERMAN H, SHETH P A, PARISKY Y R, et al Modified bi-rads scoring of breast imaging findings improves clinical judgment[J]. Breast J, 2015, 21 (6): 642- 650.
doi: 10.1111/tbj.12492 |
16 | PAN S J, YANG Q J I T O K, ENGINEERING D A survey on transfer learning[J]. IEEE T Knowl Data En, 2009, 22 (10): 1345- 1359. |
17 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2818-2826. |
18 | SINGH V K, ROMANI S, RASHWAN H A, et al. Conditional generative adversarial and convolutional networks for X-ray breast mass segmentation and shape classification[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018: 833-840. |
19 | NUNES A P, SILVA A C, DE PAIVA A C, et al Detection of masses in mammographic images using geometry, simpson's diversity index and SVM[J]. Int J Signal Imaging, 2010, 3 (1): 40- 51. |
20 | HUYNH B Q, LI H, GIGER M L Digital mammographic tumor classification using transfer learning from deep convolutional neural networks[J]. J Med Imaging, 2016, 3 (3): 034501. |
21 | DING X H, GUO Y C, DING G G, et al. ACNet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, 1911-1920. |
22 | SAINI R, JHA N K, DAS B, et al. Ulsam: Ultra-lightweight subspace attention module for compact convolutional neural networks[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, 1627-1636. |
23 | 张丽娜, 赵作伟, 宋清伟, 等 应用计算机辅助诊断技术评价血流动力学特征在乳腺MRI中的价值[J]. 中华放射学杂志, 2012, 11, 998- 1001. |
ZHANG L N, ZHAO Z W, ZHU Q W, et al Values of kinetic features measured by computer-aided diagnosis for breast MRI[J]. Chinese Journal of Radiology, 2012, 11, 998- 1001. | |
24 | GUO Y, CAI Y Q, CAI Z L, et al Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging[J]. J Magn Reson Imaging, 2002, 16 (2): 172- 178. |
[1] | Ying LIU,Yi-yun GUO,Jing-cong CHEN,Hao-wei ZHANG. Automatic Precise Segmentation of Cerebellopontine Angle Tumor Based on Faster-RCNN and Level-Set Method [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 381-391. |
[2] | WANG Wan-ting, SU Shi, JIA Sen, LIANG Dong, WANG Hai-feng. Reconstruction of Simultaneous Multi-Slice MRI Data by Combining Virtual Conjugate Coil Technology and Convolutional Neural Network [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 407-421. |
[3] | LOU Yun-zhong, LIU Ying, JIANG Hua, ZHANG Hao-wei. A Deep Learning Algorithm for Classifying Meningioma and Auditory Neuroma in the Cerebellopontine Angle from Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2020, 37(3): 300-310. |
[4] | LIU Ke-wen, LIU Zi-long, WANG Xiang-yu, CHEN Li, LI Zhao, WU Guang-yao, LIU Chao-yang. Prostate Cancer Diagnosis Based on Cascaded Convolutional Neural Networks [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 152-161. |
[5] | CHENG Hui-tao, WANG Shan-shan, KE Zi-wen, JIA Sen, CHENG Jing, QIU Zhi-lang, ZHENG Hai-rong, LIANG Dong. A Deep Recursive Cascaded Convolutional Network for Parallel MRI [J]. Chinese Journal of Magnetic Resonance, 2019, 36(4): 437-445. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 314
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||