[1] NICHOLSON J K, CONNELLY J, LINDON J C, et al. Metabonomics:a platform for studying drug toxicity and gene function[J]. Nat Rev Drug Discov, 2002, 1(2):153-161. [2] NICHOLSON J K, LINDON J C. Systems biology-metabonomics[J]. Nature, 2008, 455(7216):1054-1056. [3] AN Y P, XU W X, LI H H, et al. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats[J]. J Proteome Res, 2013, 12(8):3755-3768. [4] HOLMES E, WILSON I D, NICHOLSON J K. Metabolic phenotyping in health and disease[J]. Cell, 2008, 134(5):714-717. [5] HE Q H, TANG H R, REN P P, et al. Dietary supplementation with L-arginine partially counteracts serum metabonome induced by weaning stress in piglets[J]. J Proteome Res, 2011, 10(11):5214-5221. [6] HUANG C Y, LEI H H, ZHAO X J, et al. Metabolic influence of acute cyadox exposure on kunming mice[J]. J Proteome Res, 2013, 12(1):537-538. [7] WU X Y, LI N, TANG H R. Quantitative analysis of metabolites in mungbean (Vigna Radiata) extracts using NMR techniques[J]. Chinese J Magn Reson, 2014, 31(4):548-563. 吴香玉, 李宁, 唐惠儒. 绿豆(Vigna Radiata)代谢物组成的核磁共振定量分析[J]. 波谱学杂志, 2014, 31(4):548-563. [8] HU Y L, HAO F H, WANG Y L. NMR-based metabonomic analyses on spleen tissues of 4T1 tumor-bearing mice subjected to chemotherapies with different drug delivery strategies[J]. Chinese J Magn Reson, 2018, 35(1):8-21. 胡依黎, 豪富华, 王玉兰. 基于NMR的4T1荷瘤小鼠脾脏受不同给药方式影响的代谢组学[J]. 波谱学杂志, 2018, 35(1):8-21. [9] ZHANG C C, WU J F, WANG Y L. Gender difference in intestinal bile acid profiles in C57BL/6 mice[J]. Chinese J Magn Reson, 2018, 35(3):328-337.张聪聪, 吴俊芳, 王玉兰. 不同性别C57BL/6小鼠肠道胆汁酸组成的差异性研究[J]. 波谱学杂志, 2018, 35(3):328-337. [10] CHAN E C Y, PASIKANTI K K, NICHOLSON J K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry[J]. Nat Protoc, 2011, 6(10):1483-1499. [11] ZHOU R K, GUO K V, LI L. 5-diethylamino-naphthalene-1-sulfonyl chloride (DensCl):a novel triplex isotope labeling reagent for quantitative metabolome analysis by liquid chromatography mass spectrometry[J]. Anal Chem, 2013, 85(23):11532-11539. [12] ABASCAL K, GANORA L, YARNELL E. The effect of freeze-drying and its implications for botanical medicine:A review[J]. Phytother Res, 2005, 19(8):655-660. [13] RINDLER V, LUNEBERGER S, SCHWINDKE P, et al. Freeze-drying of red blood cells at ultra-low temperatures[J]. Cryobiology, 1999, 38(1):2-15. [14] TANG X L, PIKAL M J. Design of freeze-drying processes for pharmaceuticals:Practical advice[J]. Pharm Res, 2004, 21(2):191-200. [15] OIKAWA A, OTSUKA T, JIKUMARU Y, et al. Effects of freeze-drying of samples on metabolite levels in metabolome analyses[J]. J Sep Sci, 2011, 34(24):3561-3567. [16] IBRAHIM A H, KHALIFA S A. Effect of freeze-drying on camel's milk nutritional properties[J]. Int Food Res J, 2015, 22(4):1438-1445. [17] RANIERI A, BENELLI G, CASTAGNA A, et al. Freeze-drying duration influences the amino acid and rutin content in honeybee-collected chestnut pollen[J]. Saudi J Biol Sci, 2019, 26(2):252-255. [18] DIETERLE F, ROSS A, SCHLOTTERBECK G, et al. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabonomics[J]. Anal Chem, 2006, 78(13):4281-4290. [19] ERIKSSON L, TRYGG J, WOLD S. CV-ANOVA for significance testing of PLS and OPLS (R) models[J]. J Chemometr, 2008, 22(11,12):594-600. [20] CLOAREC O, DUMAS M E, TRYGG J, et al. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in H-1 NMR spectroscopic metabonomic studies[J]. Anal Chem, 2005, 77(2):517-526. [21] JIMENEZ C, VENTURA R, WILLIAMS J, et al. Reference materials for analytical toxicology including doping control:freeze-dried urine samples[J]. Analyst, 2004, 129(5):449-455. [22] RAISTRICK H. On a new type of chemical change produced by bacteria. The conversion of histidine into urocanic acid by bacteria of the Coli-Typhosus group[J]. Biochem J, 1917, 11(1):71-77. |