[1] BORGIA A, BORGIA M B, BUGGE K, et al. Extreme disorder in an ultrahigh-affinity protein complex[J]. Nature, 2018, 555(7694):61-66. [2] LIU G, LEVIEN M, KARSCHIN N, et al. One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature[J]. Nat Chem, 2017, 9(7):676-680. [3] NGUYEN H M, PENG X, DO M N, et al. Denoising MR spectroscopic imaging data with low-rank approximations[J]. IEEE T Bio-Med Eng, 2013, 60(1):78-89. [4] HUANG Y, CAO S H, YANG Y, et al. Ultrahigh-resolution NMR spectroscopy for rapid chemical and biological applications in inhomogeneous magnetic fields[J]. Anal Chem, 2017, 89(13):7115-7122. [5] GUO D, LU H, QU X B. A fast low rank Hankel matrix factorization reconstruction method for non-uniformly sampled magnetic resonance spectroscopy[J]. IEEE Access, 2017, 5:16033-16039. [6] GUO D, QU X B. Improved reconstruction of low intensity magnetic resonance spectroscopy with weighted low rank Hankel matrix completion[J]. IEEE Access, 2018, 6:4933-4940. [7] HILLER S, GARCES R G, MALIA T J, et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles[J]. Science, 2008, 321(5893):1206-1210. [8] GAO D L, SUN P, WANG Q W, et al. Interactions between albumin and fatty acids studied by NMR spectroscopy[J]. Chinese J Magn Reson, 2018, 35(3):338-344. 高东莉, 孙鹏, 王倩文, 等. 运用NMR研究白蛋白与脂肪酸的相互作用[J]. 波谱学杂志, 2018, 35(3):338-344. [9] MOBLI M, HOCH J C. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR[J]. Prog Nucl Magn Reson Spectrosc, 2014, 83:21-41. [10] YUAN B, DING Y, KAMAL G M, et al. Reconstructing diffusion ordered NMR spectroscopy by simultaneous inversion of Laplace transform[J]. J Magn Reson, 2017, 278:1-7. [11] QU X B, CAO X, GUO D, et al. Compressed sensing for sparse magnetic resonance spectroscopy[C]//18th Sci. Meeting Int Soc Magn Reson Med (ISMRM), Stockholm, Sweden. 2010, 10:3371. [12] HOLLAND D J, BOSTOCK M J, GLADDEN L F, et al. Fast multidimensional NMR spectroscopy using compressed sensing[J]. Angew Chem Int Ed, 2011, 50(29):6548-6551. [13] KAZIMIERCZUK K, OREKHOV V Y. Accelerated NMR spectroscopy by using compressed sensing[J]. Angew Chem Int Ed, 2011, 123(24):5670-5673. [14] QU X B, GUO D, CAO X, et al. Reconstruction of self-sparse 2D NMR spectra from undersampled data in the indirect dimension[J]. Sensors, 2011, 11(9):8888-8909. [15] QU X B, MAYZEL M, CAI J F, et al. Accelerated NMR spectroscopy with low-rank reconstruction[J]. Angew Chem Int Ed, 2015, 54(3):852-854. [16] QU X B, HUANG Y H, LU H F, et al. Accelerated nuclear magnetic resonance spectroscopy with deep learning[J]. Angew Chem Int Ed, 2020, 132(26):10383-10386. [17] SIBISI S, SKILLING J, BRERETON R G, et al. Maximum entropy signal processing in practical NMR spectroscopy[J]. Nature, 1984, 311(5985):446-447. [18] BARNA C J, TAN S M, LADE E D. Use of CLEAN in conjunction with selective data sampling for 2D NMR experiments[J]. J Magn Reson, 1988, 78(2):327-332. [19] COGGINS B E, ZHOU P. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN[J]. J Biomol NMR, 2008, 42(4):225-239. [20] JARAVINE V, IBRAGHIMOV I, OREKHOV V Y. Removal of a time barrier for high-resolution multidimensional NMR spectroscopy[J]. Nat Methods, 2006, 3(8):605-607. [21] DRORI I. Fast minimization by iterative thresholding for multidimensional NMR spectroscopy[J]. Eurasip J Adv Sig Pr, 2007, 2007(1):020248. [22] YING J F, DELAGLIO F, TORCHIA D A, et al. Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data[J]. J Biomol NMR, 2017, 68(2):101-118. [23] CHEN D C, WANG Z, GUO D, et al. Review and prospect:deep learning in nuclear magnetic resonance spectroscopy[J]. Chem-Eur J, 2020, doi:doi.org/10.1002/chem.202000246. [24] ZHENG H, HAN M Y, HU B W, et al. Comparison of different sampling schemes in compressed sensing reconstruction for DQ-SQ experiments[J]. Chinese J Magn Reson, 2014, 31(4):535-547. 郑慧, 韩明月, 胡炳文等. 不同采样模式的固体DQ-SQ实验的压缩感知重建比较[J]. 波谱学杂志, 2014, 31(4):535-547. [25] ZHANG Z Y, QU X B, LIN Y Q, et al. Sparse reconstruction algorithm of NMR spectrum based on minimizing approximate L0 norm[J]. Chinese J Magn Reson, 2013, 30(4):528-540. 张正炎, 屈小波, 林雁勤等. 基于近似L0范数最小化的NMR波谱稀疏重建算法[J]. 波谱学杂志, 2013, 30(4):528-540. [26] NIE L S, JIANG B, ZHANG X, et al. A compressed sensing and resampling based noise suppression method for NMR[J]. Chinese J Magn Reson, 2016, 33(2):244-256. 聂莉莎, 蒋滨, 张许, 等. 基于压缩感知/重采样的NMR噪声抑制新方法[J]. 波谱学杂志, 2016, 33(2):244-256. [27] SHCHUKINA A, KASPRZAK P, DASS R, et al. Pitfalls in compressed sensing reconstruction and how to avoid them[J]. J Biomol NMR, 2016, 68(2):79-98. [28] CANDÈS E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Proc Mag, 2008, 25(2):21-30. [29] 张贤达. 矩阵分析及应用[M]. 北京:清华大学出版社, 2015. [30] CANDÈS E J, RECHT B. Exact matrix completion via convex optimization[J]. Found Comput Math, 2009, 9(6):717-772. [31] CAI J F, CANDÈS E J, SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM J Optimiz, 2010, 20(4):1956-1982. [32] YING J X, LU H, WEI Q. Hankel matrix nuclear norm regularized tensor completion for N-dimensional exponential signals[J]. IEEE T Signal Proce, 2017, 65(14):3702-3717. [33] KOEHL P. Linear prediction spectral analysis of NMR data[J]. Prog Nucl Magn Reson Spectrosc, 1999, 34(3,4):257-299. [34] MAN P P, BONHOMME C, BABONNEAU F. Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing units[J]. Solid State Nucl Mag, 2014, 61:28-34. [35] QIU T Y, LIAO W J, GUO D, et al. Gaussian noise removal with exponential functions and spectral norm of weighted Hankel matrices[J]. arXiv:2001.11815, 2020. [36] MAYZEL M, KAZIMIERCZUK K, OREKHOV V Y. The causality principle in the reconstruction of sparse NMR spectra[J]. Chem Commun, 2014, 50(64):8947-8950. [37] RECHT B, FAZEL M, PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Rev, 2010, 52(3):471-501. [38] FAZEL M, PONG T K, SUN D F, et al. Hankel matrix rank minimization with applications to system identification and realization[J]. SIAM J Matrix Anal A, 2013, 34(3):946-977. [39] LU H F, ZHANG X L, QIU T Y, et al. Low rank enhanced matrix recovery of hybrid time and frequency data in fast magnetic resonance spectroscopy[J]. IEEE T Bio-Med Eng, 2018, 65(4):809-820. [40] HAHN E L. Spin echoes[J]. Phys Rev, 1950, 80:580-594. [41] MORRIS K F, JOHNSON C S. Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy[J]. J Am Chem Soc, 1992, 114(8):3139-3141. [42] HUANG J L, YU Y H. Effects of digital resolution on diffusional dimension in DOSY experiments[J]. Chinese J Magn Reson, 2018, 35(3):287-293. 黄俊霖, 余亦华. 扩散序谱(DOSY)实验中扩散系数维数字分辨率的影响[J]. 波谱学杂志, 2018, 35(3):287-293. [43] URBAŃCZYK M, KOŹMIŃSKI W, KAZIMIERCZUK K. Accelerating diffusion-ordered NMR spectroscopy by joint sparse sampling of diffusion and time dimensions[J]. Angew Chem Int Ed, 2014, 53(25):6464-6467. [44] URBAŃCZYK M, BERNIN D, KOŹMIŃSKI W, et al. Iterative thresholding algorithm for multiexponential decay applied to PGSE NMR data[J]. Anal Chem, 2013, 85(3):1828-1833. [45] 张自飞. 联合稀疏与低秩特性的磁共振扩散谱重建[D]. 厦门:厦门大学, 2019. [46] 陈忠, 张自飞, 郭迪, 等. 结合稀疏和低秩特性的欠采样磁共振扩散谱的重建方法:中国, 10874832.4[P]. 2018-11-16. [47] LIN E P, YANG Y, HUANG Y Q, et al. High-resolution reconstruction for diffusion-ordered NMR spectroscopy[J]. Anal Chem, 2020, 92(1):634-639. [48] COLBOURNE A A, MORRIS G A, NILSSON M. Local covariance order diffusion-ordered spectroscopy:a powerful tool for mixture analysis[J]. J Am Chem Soc, 2011, 133(20):7640-7643. |