Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (3): 323-335.doi: 10.11938/cjmr20202880
• Articles • Previous Articles Next Articles
Zi-hao WANG1,He XU1,Tao WANG2,Shan-zhong YANG1,Yun-sheng DING1,Hai-bing WEI1,*()
Received:
2020-12-28
Online:
2021-09-05
Published:
2021-03-12
Contact:
Hai-bing WEI
E-mail:hbwei@hfut.edu.cn
CLC Number:
Zi-hao WANG,He XU,Tao WANG,Shan-zhong YANG,Yun-sheng DING,Hai-bing WEI. NMR Spectroscopic Studies on (exo, endo) C-2 Monosubstituted Norbornene Derivatives[J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 323-335.
Table 1
1H and 13C NMR assignments of exo-NB-COOH
Position | δC | δH (J/Hz) | 1H-1H COSY | 1H-13C HMQC |
1 | 46.7 | 3.11 (1H, m) | H-6, 7a, 7b | + |
2 | 43.1 | 2.27 (1H, m) | H-3a, 3b | + |
3a b | 30.3 | 1.96 (1H, dt, J1=11.4 Hz, J2=3.0 Hz) 1.40 (1H, m) | H-2, 3b, 4 H-2, 3a, 4 | + |
4 | 41.7 | 2.94 (1H, m) | H-3a, 3b, 5, 7a, 7b | + |
5 | 138.1 | 6.15 (1H, dd, J1=5.4 Hz, J2=3.0 Hz) | H-4, 6 | + |
6 | 135.7 | 6.12 (1H, dd, J1=5.4 Hz, J2=3.0 Hz) | H-1, 5 | + |
7a b | 46.4 | 1.39 (1H, d, J=8.4 Hz) 1.54 (1H, d, J=8.4 Hz) | H-1, 4, 7b H-1, 4, 7a | + |
8 | 182.7 | 11.61 (1H, br) | / | / |
Table 2
1H and 13C NMR assignments of endo-NB-COOH
Position | δC | δH (J/Hz) | 1H -1H COSY | 1H-13C HMQC |
1 | 45.7 | 3.23 (1H, m) | H-2, 6, 7a, 7b | + |
2 | 43.2 | 3.00 (1H, dt, J1=9.6 Hz, J2=J3=4.2 Hz) | H-1, 3a, 3b | + |
3a b | 29.1 | 1.92 (1H, ddd, J1=12.0 Hz, J2=9.0 Hz, J3=3.6 Hz) 1.40 (1H, ddd, J1=12.0 Hz, J2=4.2 Hz, J3=2.4 Hz) | H-2, 3b, 4 H-2, 3a, 4 | + |
4 | 42.5 | 2.92 (1H, m) | H-3a, 3b, 5, 7a, 7b | + |
5 | 137.9 | 6.21 (1H, dd, J1=6.0 Hz, J2=3.0 Hz) | H-4, 6 | + |
6 | 132.5 | 6.00 (1H, dd, J1=6.0 Hz, J2=3.0 Hz) | H-1, 5 | + |
7a b | 49.7 | 1.45 (1H, ddd, J1=8.4 Hz, J2=4.2 Hz, J3=2.4 Hz) 1.29 (1H, d, J=8.4 Hz) | H-1, 4, 7b H-1, 4, 7a | + |
8 | 181.1 | 11.29 (1H, br) | / | / |
Table 3
1H and 13C NMR assignments of exo-NB-CH2OH
Position | δC | δH (J/Hz) | 1H -1H COSY | 1H-13C HMQC |
1 | 43.3 | 2.75 (1H, m) | H-6, 7a, 7b | + |
2 | 41.9 | 1.62 (1H, m) | H-3a, 3b, 8a, 8b | + |
3a b | 29.5 | 1.11 (1H, dt, J1=12.0 Hz, J2=J3=4.2 Hz) 1.25 (1H, ddd, J1=12.0 Hz, J2=8.4 Hz, J3=2.4 Hz) | H-2, 3b, 4 H-2, 3a, 4 | + |
4 | 41.5 | 2.82 (1H, m) | H-3a, 3b, 5, 7a, 7b | + |
5 | 136.8 | 6.07 (1H, dd, J1=6.0 Hz, J2=3.0 Hz) | H-4, 6 | + |
6 | 136.4 | 6.11 (1H, dd, J1=6.0 Hz, J2=3.0 Hz) | H-1, 5 | + |
7a b | 44.9 | 1.29 (1H, d, J1=9.0 Hz) 1.34 (1H, d-quint, J1=9.0 Hz, J2=1.8 Hz) | H-1, 4, 7b H-1, 4, 7a | + |
8a b 8β | 67.5 | 3.53 (1H, dd, J1=10.8 Hz, J2=8.4 Hz) 3.70 (1H, dd, J1=10.8 Hz, J2=6.6 Hz) 1.49 (1H, s) | H-2, 8b H-2, 8a / | + |
Table 4
1H NMR and 13C NMR assignments of endo-NB-CH2OH
Position | δC | δH (J/Hz) | 1H -1H COSY | 1H-13C HMQC |
1 | 43.6 | 2.93 (1H, m) | H-2, 6, 7a, 7b | + |
2 | 41.7 | 2.29 (1H, m) | H-1, 3a, 3b, 8a, 8b | + |
3a b | 28.8 | 1.82 (1H, ddd, J1=12.0 Hz, J2=9.0 Hz, J3=3.6 Hz) 0.52 (1H, ddd, J1=12.0 Hz, J2=4.2 Hz, J3=2.4 Hz) | H-2, 3b, 4 H-2, 3a, 4 | + |
4 | 42.2 | 2.81 (1H, m) | H-3a, 3b, 5, 7a, 7b | + |
5 | 137.4 | 6.14 (1H, dd, J1=6.0 Hz, J2=3.0 Hz) | H-4, 6 | + |
6 | 132.1 | 5.95 (1H, dd, J1=6.0 Hz, J2=3.0 Hz) | H-1, 5 | + |
7a b | 49.5 | 1.45 (1H, dm, J1=8.4 Hz) 1.27 (1H, d, J1=8.4 Hz) | H-1, 4, 7b H-1, 4, 7a | + |
8a b 8β | 66.5 | 3.26 (1H, dd, J1=10.2 Hz, J2=8.4 Hz) 3.40 (1H, dd, J1=10.2 Hz, J2=6.6 Hz) 1.42 (1H, s) | H-2, 8b H-2, 8a / | + |
1 |
SCHLEYER P V R , WILLIAMS J E , BLANCHARD K R . Evaluation of strain in hydrocarbons. The strain in adamantane and its origin[J]. J Am Chem Soc, 1970, 92 (8): 2377- 2386.
doi: 10.1021/ja00711a030 |
2 |
KOVAČIČ S , SLUGOVC C . Ring-opening metathesis polymerisation derived poly(dicyclopentadiene) based materials[J]. Mater Chem Front, 2020, 4 (8): 2235- 2255.
doi: 10.1039/D0QM00296H |
3 |
FERNANDEZ I , BICKELHAUPT F M . Origin of the "Endo Rule" in Diels-Alder reactions[J]. J Comput Chem, 2014, 35 (5): 371- 376.
doi: 10.1002/jcc.23500 |
4 |
RULE J D , MOORE J S . ROMP reactivity of endo- and exo-dicyclopentadiene[J]. Macromolecules, 2002, 35 (21): 7878- 7882.
doi: 10.1021/ma0209489 |
5 |
KOICHIRO N , MASAO N . The Synthesis and absolute configuration of optically active tricyclo[4.3.0.03, 8] nonane (Twist-brendane)[J]. Bull Chem Soc Jpn, 1973, 46 (3): 888- 892.
doi: 10.1246/bcsj.46.888 |
6 |
JANSSEN A J M , KLUNDER A J H , ZWANENBURG B . Enzymatic resolution of norbor(NE)nylmethanols in organic media and an application to the synthesis of (+)- and (−)-endo-norbornene lactone[J]. Tetrahedron, 1991, 47 (29): 5513- 5538.
doi: 10.1016/S0040-4020(01)80984-4 |
7 |
ZHANG H K , CHAN W H , LEE A W M , et al. Synthesis of chiral sultams and their application as chiral auxiliaries in an asymmetric Diels-Alder reaction[J]. Tetrahedron-Asymmetr, 2005, 16 (4): 761- 771.
doi: 10.1016/j.tetasy.2004.12.026 |
8 |
CAMPAGNA M , TRZOSS M , BIENZ S . More than a protective group: Synthesis and applications of a new chiral silane[J]. Org Lett, 2007, 9 (19): 3793- 3796.
doi: 10.1021/ol071382h |
9 |
KANAO M , OTAKE A , TSUCHIYA K , et al. Stereo-selective synthesis of exo-norbornene derivatives for resist materials[J]. J Photopolym Sci Tech, 2009, 22 (3): 365- 370.
doi: 10.2494/photopolymer.22.365 |
10 |
KANAO M , OTAKE A , TSUCHIYA K , et al. Stereo-selective synthesis of 5-Norbornene-2-exo-carboxylic scid-rapid isomerization and kinetically selectivehydrolysis[J]. Int J Org Chem, 2012, 2 (1): 26- 30.
doi: 10.4236/ijoc.2012.21005 |
11 |
DOU M , ZHAO Q , HOU X L , et al. Structural assignment and quantitative analysis for hydrogenation products of anthracene by NMR technology[J]. Chinese J Magn Reson, 2020,
doi: 10.11938/cjmr20202849 |
窦梦, 赵奇, 侯相林, 等. 蒽加氢产物的结构指认和定量核磁共振分析[J]. 波谱学杂志, 2020, 10
doi: 10.11938/cjmr20202849 |
|
12 | HORST F. Basic one- and two-dimensional NMR spectroscopy(5th ed.)[M]. New York, 2010. |
13 | YIN T P , WANG Z , CHEN Y , et al. An NMR analysis of 10-indol cytochalasin chaetoglobosin F[J]. Chinese J Magn Reson, 2019, 36 (1): 74- 82. |
尹田鹏, 汪泽, 陈阳, 等. 10-吲哚细胞松弛素chaetoglobosin F的NMR解析[J]. 波谱学杂志, 2019, 36 (1): 74- 82. | |
14 |
KARPLUS M . Vicinal proton coupling in nuclear magnetic resonance[J]. J Am Chem Soc, 1963, 85 (18): 2870- 2871.
doi: 10.1021/ja00901a059 |
15 | 薛松. 有机结构分析[M]. 合肥: 中国科学技术大学出版社, 2005. |
[1] | Chong-wu WANG,Xi HUANG,Lei SHI,Shi-zhen CHEN,Xin ZHOU. Cathepsin B Triggered Hyperpolarization 129Xe MRI Probe for Ultra-Sensitive Lung Cancer Cells Detection [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 336-344. |
[2] | Jia-min WU,Yu-cheng HE,Zheng XU,Yan-he ZHU,Wen-zheng JIANG. A Wide-Band Matching Method for Radio Frequency Coils Used in Soil Moisture Measurement [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 414-423. |
[3] | Xin-yi ZHAO,Dong HAN,Hong-jun LUO,Wen-bin SHEN,Gong-jun YANG. Spectroscopic Studies of Delafloxacin Meglumine [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 268-276. |
[4] | Xiao-wen CHEN,Bi-ling HUANG,Shao-hua HUANG,Yu-fen ZHAO. An NMR Study on the clpC Operon Binding Region of Transcription Factor CtsR from Bacillus subtilis [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 155-163. |
[5] | Yi LI,Jia-xiang XIN,Jia-chen WANG,Da-xiu WEI,Ye-feng YAO. Preparation Efficiency of Nuclear Spin Singlet State: A Comparison Among Three Pulse Sequences [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 227-238. |
[6] | Jin-bo YU,Cai ZHANG,Ze-ting ZHANG,Guo-hua XU,Cong-gang LI. Interactions Between α-synuclein and Intact Mitochondria Studied by NMR [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 164-172. |
[7] | Meng-yu DOU,Qi ZHAO,Xiang-lin HOU,Lei LIU,Ming-xing TANG,Ying-xiong WANG. Structural Elucidation and Quantitative Analysis of Hydrogenation Products of Anthracene by NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 239-248. |
[8] | Wei ZHANG,Yi-ming WU,Wei-ping CUI,Liang XIAO. Correction for the Nuclear Magnetic Resonance Porosity in Heavy Oil-bearing Reservoirs [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 204-214. |
[9] | Kun MENG,Sheng-jian WANG,Zong-an XUE,Rui-qing HOU,Liang XIAO. Quantitative Evaluation of Shale Pore Structure Using Nuclear Magnetic Resonance Data [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 215-226. |
[10] | Zhi-wu ZHANG,Ju YANG,Ze-feng NIE,Shang-xiang YE,Xu DONG,Chun TANG. Development of a Temperature Senor Based on 19F-labeled Phosphorylated Ubiquitin [J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 173-181. |
[11] | LIAO Huai-yu, HAN Hong-yuan, CHEN Fei, ZHANG Hai-yan, YANG Jing, ZHAO Tian-zeng. An NMR Study on Two New β-Dihydroagrofuran Compounds in Celastrus angulatus Maxim [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 101-109. |
[12] | WANG Rui-di, XU Bei-bei, SONG Yan-hong, WANG Xue-lu, YAO Ye-feng. Methanol-Water Interaction in Photocatalytic Methanol Reforming ─ An Operando NMR Study [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 43-57. |
[13] | LIU Si, AN Yan-peng, TANG Hui-ru. Effects of Lyophilization on the Metabonomic Phenotypes of Human Biofluids Characterized with NMR Analysis [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 484-489. |
[14] | LI Ying-jun, YANG Hong-jing, LIU Ji-hong, JIN Kun, LIN Le-di, LIU Xue-jie. Assignments of NMR Spectral Data of a Novel Carbazole-Triazinoindole Based N-Acylhydrazone Derivative [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 496-504. |
[15] | KE Han-ping, CAI Hong-hao. High-Resolution Localized NMR Spectroscopy Based on Hadamard-Encoding [J]. Chinese Journal of Magnetic Resonance, 2020, 37(4): 524-532. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||