波谱学杂志 ›› 2022, Vol. 39 ›› Issue (3): 303-315.doi: 10.11938/cjmr20222988

• 研究论文 • 上一篇    下一篇

基于3D VNetTrans的膝关节滑膜磁共振图像自动分割

王颖珊1,邓奥琦3,毛瑾玲1,朱中旗1,石洁2,*(),杨光1,马伟伟4,路青4,*(),汪红志1,*()   

  1. 1. 华东师范大学 物理与电子科学学院, 上海市磁共振重点实验室, 上海 200062
    2. 上海市光华中西医结合医院, 上海 200052
    3. 上海市中医药大学 针灸推拿学院, 上海 200032
    4. 上海交通大学医学院附属仁济医院, 上海 200127
  • 收稿日期:2022-03-23 出版日期:2022-09-05 发布日期:2022-05-11
  • 通讯作者: 石洁,路青,汪红志 E-mail:ghyyfsk@163.com;drluqingsjtu@163.com;hzwang@phy.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(61731009)

Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans

Ying-shan WANG1,Ao-qi DENG3,Jin-ling MAO1,Zhong-qi ZHU1,Jie SHI2,*(),Guang YANG1,Wei-wei MA4,Qing LU4,*(),Hong-zhi WANG1,*()   

  1. 1. Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
    2. Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200052; China
    3. College of Acupuncture and Massage, Shanghai University of Chinese Medicine, Shanghai 200032, China
    4. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
  • Received:2022-03-23 Online:2022-09-05 Published:2022-05-11
  • Contact: Jie SHI,Qing LU,Hong-zhi WANG E-mail:ghyyfsk@163.com;drluqingsjtu@163.com;hzwang@phy.ecnu.edu.cn

摘要:

膝关节是类风湿性关节炎(Rheumatoid Arthritis,RA)常见累及关节,膝关节滑膜的精准分割对RA诊断和治疗有重要影响,本文提出了一种基于VNet网络的改进算法对膝关节滑膜磁共振图像进行自动分割.首先对39名滑膜炎患者的膝关节磁共振图像进行数据预处理,通过将Transformer编码器嵌入VNet网络底部的方式构建VNetTrans网络,使用MemSwish激活函数进行训练. 最终模型平均Dice系数为0.758 5,HD为24.6 mm;相较于VNet,Dice系数提升0.083 6,HD距离减少10 mm.实验结果表明,该算法可对膝关节磁共振图像中滑膜增生区域实现较好的3D分割,具有诊断和监测RA发展过程的应用价值.

关键词: 磁共振图像, 医学图像分割, 深度学习, 滑膜炎

Abstract:

Knee joint is commonly hurt by rheumatoid arthritis (RA). Accurate segmentation of synovium is essential for the diagnosis and treatment of RA. This paper proposes an algorithm based on improved VNet for automatically segmenting knee joint synovial magnetic resonance images. Firstly, the knee joint magnetic resonance images of 39 patients with synovitis were preprocessed. VNetTrans was constructed by embedding Transformer at the bottom of VNet. The MemSwish activation function was used for training. The average Dice score of the final model is 0.758 5 and the HD is 24.6 mm. Compared with VNet, the proposed model increased Dice score by 0.083 6 and decreased HD by 10 mm. Experimental results demonstrated that the proposed algorithm achieved satisfying 3D segmentation of the synovial hyperplasia area in the knee magnetic resonance images. It can be utilized to facilitate the diagnosis and monitoring of RA.

Key words: magnetic resonance image, medical image segmentation, deep learning, synovitis

中图分类号: