1 |
SMOLEN J S, ALETAHA D, BARTON A, et alRheumatoid arthritis[J]. Nat Rev Dis Primers, 2018,4 (1): 18001.
doi: 10.1038/nrdp.2018.1
|
2 |
JIN S Y, LI M T, FANG Y F, et alChinese registry of rheumatoid arthritis (CREDIT): II. prevalence and risk factors of major comorbidities in Chinese patients with rheumatoid arthritis[J]. Arthritis ResTher, 2017,19 (1): 251.
|
3 |
中华医学会风湿病学分会2018中国类风湿关节炎诊疗指南[J]. 中华内科杂志, 2018,57 (4): 242- 251.
doi: 10.3760/cma.j.issn.0578-1426.2018.04.004
|
|
ASSOCIATION C R2018 Chinese guideline for the diagnosis and treatment of rheumatoid arthritis[J]. Chin J Intern Med, 2018,57 (4): 242- 251.
doi: 10.3760/cma.j.issn.0578-1426.2018.04.004
|
4 |
SUGIMOTO H, TAKEDA A, KANO SAssessment of disease activity in rheumatoid arthritis using magnetic resonance imaging: quantification of pannus volume in the hands[J]. Bri J Rheumatol, 1998,37 (8): 854- 861.
doi: 10.1093/rheumatology/37.8.854
|
5 |
OSTERGAARD MDifferent approaches to synovial membrane volume determination by magnetic resonance imaging: manual versus automated segmentation[J]. Rheumatology, 1997,36 (11): 1166- 1177.
doi: 10.1093/rheumatology/36.11.1166
|
6 |
SAKASHITA T, KAMISHIMA T, KOBAYASHI Y, et alAccurate quantitative assessment of synovitis in rheumatoid arthritis using pixel-by-pixel, time-intensity curve shape analysis[J]. Br J Radiol, 2016,89 (1061): 20151000.
doi: 10.1259/bjr.20151000
|
7 |
FOTINOS-HOYER A K, GUERMAZI A, JARA H, et alAssessment of synovitis in the osteoarthritic knee: comparison between manual segmentation, semiautomated segmentation, and semiquantitative assessment using contrast-enhanced fat-suppressed T1-weighted MRI[J]. Magn Reson Med, 2010,64 (2): 604- 609.
doi: 10.1002/mrm.22401
|
8 |
PERRY T A, GAIT A, O’NEILL T W, et alMeasurement of synovial tissue volume in knee osteoarthritis using a semiautomated MRI-based quantitative approach[J]. Magn Reson Med, 2019,81 (5): 3056- 3064.
doi: 10.1002/mrm.27633
|
9 |
WANG A, FRANKE A, WESARG S. Semi-automatic segmentation of JIA-induced inflammation in MRI images of ankle joints[C]// Medical Imaging 2019: Image Processing, SPIE, 2019, 10949: 875-881.
|
10 |
ANDERSEN J K H, PEDERSEN J S, LAURSEN M S, et alNeural networks for automatic scoring of arthritis disease activity on ultrasound images[J]. RMD open, 2019,5 (1): e000891.
doi: 10.1136/rmdopen-2018-000891
|
11 |
CHRISTENSEN A B H, JUST S A, ANDERSEN J K H, et alApplying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients[J]. Ann Rheum Dise, 2020,79 (9): 1189- 1193.
doi: 10.1136/annrheumdis-2019-216636
|
12 |
IQBAL I, SHAHZAD G, RAFIQ N, et alDeep learning-based automated detection of human knee joint's synovial fluid from magnetic resonance images with transfer learning[J]. IET Image Processing, 2020,14 (10): 1990- 1998.
doi: 10.1049/iet-ipr.2019.1646
|
13 |
WONG L M, SHI L, XIAO F, et alFully automated segmentation of wrist bones on T2-weighted fat-suppressed MR images in early rheumatoid arthritis[J]. Quant Imag Med Surg, 2019,9 (4): 579.
doi: 10.21037/qims.2019.04.03
|
14 |
魏小娜, 邢嘉祺, 王振宇, 等基于改进U-Net的关节滑膜磁共振图像的分割[J]. 计算机应用, 2020,40 (11): 3340- 3345.
|
|
WEI X N, XIN J Q, WANG Z Y, et alMagnetic resonance image segmentation of articular synovium based on improved U-Net[J]. Journal of Computer Applications, 2020,40 (11): 3340- 3345.
|
15 |
王振宇, 王颖珊, 毛瑾玲, 等基于Dense-UNet++的关节滑膜磁共振图像分割[J]. 波谱学杂志, 2022,39 (2): 208- 219.
|
|
WANG Z Y, WANG Y S, MAO J L, et alMagnetic resonance images segmentation of synovium based on Dense-UNet++[J]. Chinese J Magn Reson, 2022,39 (2): 208- 219.
|
16 |
WANG W X, CHEN C, DING M, et al. TransBTS: Multimodal brain tumor segmentation using transformer[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2021: 109-119.
|
17 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2015: 3431-3440.
|
18 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical image computing and computer-assisted intervention, Cham: Springer, 2015: 234-241.
|
19 |
ÇIçEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]// International conference on medical image computing and computer-assisted intervention. Springer, 2016: 424-432.
|
20 |
MILLETARI F, NAVAB N, AHMADI S-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[C]// 2016 fourth international conference on 3D vision (3DV), IEEE, 2016: 565-571.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the Advances in Neural Information Processing Systems, 2017: 6000-6010.
|
22 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[OL]. arXiv preprint arXiv: 2010.11929, 2020.
|
23 |
NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]// Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel: 2010: 807-814.
|
24 |
RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[J]. arXiv preprint arXiv: 1710.05941, 2017.
|
25 |
TAN M, LE Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]// International conference on machine learning, PMLR, 2019: 6105-6114.
|
26 |
YUAN L, CHEN Y, WANG T, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 558-567.
|
27 |
YUSHKEVICH P A, GAO Y, GERIG G. ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images[C]// 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2016: 3342-3345.
|
28 |
HATAMIZADEH A, TANG Y, NATH V, et al. Unetr: Transformers for 3d medical image segmentation[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 574-584.
|