波谱学杂志 ›› 2022, Vol. 39 ›› Issue (3): 267-277.doi: 10.11938/cjmr20223004

• 研究论文 • 上一篇    下一篇

基于模糊标签和深度学习的TOF-MRA影像脑动脉瘤自动检测

陈萌1,耿辰2,李郁欣3,耿道颖3,鲍奕仿3,*(),戴亚康1,2,*()   

  1. 1. 徐州医科大学 医学影像学院, 江苏 徐州 221000
    2. 中国科学院苏州生物医学工程技术研究所, 江苏 苏州 215000
    3. 复旦大学附属华山医院 放射科, 复旦大学医学功能与分子影像研究所, 上海 200000
  • 收稿日期:2022-05-24 出版日期:2022-09-05 发布日期:2022-07-20
  • 通讯作者: 鲍奕仿,戴亚康 E-mail:bao_yifang@163.com;daiyk@sibet.ac.cn
  • 基金资助:
    国家自然科学基金资助项目(61672236);上海市科学技术委员会科技创新行动计划临床医学领域项目(19411951200);苏州市科技发展计划项目(SS202072)

Automatic Detection for Cerebral Aneurysms in TOF-MRA Images Based on Fuzzy Label and Deep Learning

Meng CHEN1,Chen GENG2,Yu-xin LI3,Dao-ying GENG3,Yi-fang BAO3,*(),Ya-kang DAI1,2,*()   

  1. 1. School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China
    2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215000, China
    3. Department of Radiology, Huashan Hospital, Fudan University, Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200000, China
  • Received:2022-05-24 Online:2022-09-05 Published:2022-07-20
  • Contact: Yi-fang BAO,Ya-kang DAI E-mail:bao_yifang@163.com;daiyk@sibet.ac.cn

摘要:

脑动脉瘤破裂造成的蛛网膜下腔出血致死致残率极高,借助深度学习网络辅助医生实现高效筛查具有重要意义.为提高基于时间飞跃法磁共振血管造影(Time of Flight-Magnetic Resonance Angiography,TOF-MRA)的脑动脉瘤自动检测的精度,本文基于模糊标签方式,提出一种基于变体3D U-Net和双分支通道注意力(Dual-branch Channel Attention,DCA)的深度神经网络DCAU-Net,DCA模块可以自适应地调整通道特征的响应,提高特征提取能力.首先对260例病例的TOF-MRA影像预处理,将数据集分为174例训练集、43例验证集和43例测试集,然后使用处理后的数据训练和验证DCAU-Net,测试集实验结果表明DCAU-Net可以达到90.69%的敏感度,0.83个/例的假阳性计数和0.52的阳性预测值,有望为动脉瘤筛查提供参考.

关键词: 脑动脉瘤, 自动检测, 深度学习, 模糊标签, 双分支注意力

Abstract:

Subarachnoid hemorrhage caused by the rupture of cerebral aneurysms is extremely fatal and disabling. It’s imperative for radiologists to achieve efficient screening with the help of deep learning-based models. To improve the detection sensitivity of time of flight-magnetic resonance angiography (TOF-MRA) images, this study proposed a neural network named DCAU-Net which is based on fuzzy labels, 3D U-Net variant, and dual-branch channel attention (DCA), and able to adaptively adjust the response of channel features to improve feature extraction capability. First, TOF-MRA images from 260 subjects were preprocessed, and the data were split into the training set (N=174), validation set (N=43) and testing set (N=43). Then the preprocessed data were used for training and validating DCAU-Net. The results show that DCAU-Net scores 90.69% of sensitivity, 0.83 per case of false positive count and 0.52 of positive predicted value in the testing set, providing a promising tool for detecting cerebral aneurysms.

Key words: cerebral aneurysm, automatic detection, deep learning, fuzzy label, dual branch channel attention mechanism

中图分类号: