[1] SAMI S, WILLIAMS N, HUGHES L E, et al. Neurophysiological signatures of Alzheimer's disease and frontotemporal lobar degeneration:pathology versus phenotype[J]. Brain, 2018, 141(8):2500-2510. [2] KIM H, LEE J U, SONG S, et al. A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers[J]. Biosens Bioelectron, 2018, 101:96-102. [3] ALZHEIMEI'S ASSOCIATION. 2018 Alzheimer's disease facts and figures[OL]. http://www.alz.org/alzheimers-dementia/facts-figures. [4] ZHANG Y D, WANG S H, PHILLIPS P, et al. Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC[J]. Biomed Signal Proces, 2015, 21:58-73. [5] XIA H, LIU W F, WANG X, et al. Comparative study of two-dimensional and three-dimensional texture analysis of brain MR images in patients with Alzheimer's disease[J]. Journal of Beihua University (Nature), 2013, 14(5):553-556.夏翃, 刘卫芳, 王旭, 等. 阿尔茨海默病患者脑MR图像二维及三维纹理分析比较研究[J]. 北华大学学报(自然), 2013, 14(5):553-556. [6] LI X, TONG L Z, ZHOU X X, et al. Classification of Alzheimer's disease and mild cognitive impairment based on three-dimensional texture features of MR images[J]. Chinese Medical Imaging Technology, 2011, 27(5):1047-1051.李昕, 童隆正, 周晓霞, 等. 基于MR图像三维纹理特征的阿尔茨海默病和轻度认知障碍的分类[J]. 中国医学影像技术, 2011, 27(5):1047-1051. [7] YU L, XIA H, LIU W F. Classification of Alzheimer's disease and healthy controls based on three-dimensional texture features of hippocampus based on magnetic resonance images[J]. Journal of Biomedical Engineering, 2016(6):1090-1094.于鲁, 夏翃, 刘卫芳. 基于磁共振图像海马三维纹理特征的阿尔茨海默病及健康对照的分类研究[J]. 生物医学工程学杂志, 2016(6):1090-1094. [8] JONGKREANGKRAI C, VICHIANIN Y, TOCHAROENCHAI C, et al. Computer-aided classification of Alzheimer's disease based on support vector machine with combination of cerebral image features in MRI[J]. Journal of Physics:Conference Series, 2016, 694(1):012036. [9] JAISWAL A K, BANKA H. Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals[J]. Biomed Signal Proces, 2017, 34:81-92. [10] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE T Syst Man Cy, 1973, smc-3(6):610-621. [11] THIBAULT G, ANGULO J, MEYER F. Advanced statistical matrices for texture characterization:Application to DNA chromatin and microtubule network classification[C]//IEEE International Conference on Image Processing. 2011. [12] JOACHIMS T. Making large-scale SVM learning practical[R]//Technische Universität Dortmund, Sonderforschungsbereich 475:Komplexitätsreduktion in Multivariaten Datenstrukturen, 1998. [13] ZHANG H M, CHEN S Z. A new brain function imaging analysis method-Statistical parametric mapping(SPM)[J]. Chinese Medical Imaging Technology, 2002, 18(7):711-713.张海敏, 陈盛祖. 一种新的脑功能显像分析法-统计参数图(SPM)[J]. 中国医学影像技术, 2002, 18(7):711-713. [14] OJALA T, PIETIKÄINEN M, MÄENPÄÄ T. Gray scale and rotation invariant texture classification with local binary patterns[C]//European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2000. [15] TAN X Y, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Trans Image Process, 2010, 19(6):1635-1650. [16] LI M W, OISHI K, HE X H, et al. An efficient approach for differentiating Alzheimer's disease from normal elderly based on multicenter MRI using gray-level invariant features[J]. PloS One, 2014, 9(8):e105563. [17] MURALA S, WU Q M J. Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval[J]. Neurocomputing, 2015, 149(C):1502-1514. [18] MORGADO P, SILVEIRA M, MARQUES J S. Diagnosis of Alzheimer's disease using 3D local binary patterns[J]. Computer Methods in Biomechanics & Biomedical Engineering Imaging & Visualization, 2013, 1(1):2-12. [19] HOLMES G, DONKIN A, WITTEN I H. WEKA:a machine learning workbench[C]//Brisbane:Proceedings of ANZⅡS'94-Australian New Zealand Intelligent Information Systems Conference, 1994. doi:10.1109/ANZⅡS.1994.396988. [20] ALTAF M A B, TILLAK J, KIFLE Y, et al. A 1.83µJ/classification nonlinear support-vector-machine-based patient-specific seizure classification SoC[C]//IEEE International Solid-State Circuits Conference Digest of Technical Papers. 2013:100-101. [21] CHIK Z, ALJANABI Q A, KASA A, et al. Tenfold cross validation artificial neural network modeling of the settlement behavior of a stone column under a highway embankment[J]. Arab J Geosci, 2014, 7(11):4877-4887. [22] SONG Y, XIE H B, YANG G. Segmented dictionary learning algorithm for compressed perceptual magnetic resonance imaging[J]. Chinese J Magn Reson, 2016, 33(4):559-569.宋阳, 谢海滨, 杨光. 用于压缩感知磁共振成像的分割字典学习算法[J]. 波谱学杂志, 2016, 33(4):559-569. [23] ZHU X T, HE X B, LIU Y, et al. Semi-automatic region division and cell counting method for simple brain slice images[J]. Chinese J Magn Reson, 2018, 35(2):133-140.朱续涛, 何晓斌, 刘悦, 等. 一种简易的脑片图像的半自动区域划分及细胞计数方法[J]. 波谱学杂志, 2018, 35(2):133-140. |