波谱学杂志 ›› 2022, Vol. 39 ›› Issue (3): 366-380.doi: 10.11938/cjmr20212962

• 综述与评论 • 上一篇    

生成对抗网络在医学图像转换领域的应用

常晓1,蔡昕1,杨光2,聂生东1,*()   

  1. 1. 上海理工大学医学影像工程研究所,上海 200082
    2. 华东师范大学 物理与电子科学学院,上海 200062
  • 收稿日期:2021-12-06 出版日期:2022-09-05 发布日期:2022-02-18
  • 通讯作者: 聂生东 E-mail:nsd4647@163.com
  • 基金资助:
    国家自然科学基金资助项目(81830052);上海市分子影像重点实验室资助项目(18DZ2260400)

Applications of Generative Adversarial Networks in Medical Image Translation

Xiao CHANG1,Xin CAI1,Guang YANG2,Sheng-dong NIE1,*()   

  1. 1. Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China
    2. School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
  • Received:2021-12-06 Online:2022-09-05 Published:2022-02-18
  • Contact: Sheng-dong NIE E-mail:nsd4647@163.com

摘要:

近年来,生成对抗网络(Generative Adversarial Network,GAN)以其独特的对抗训练机制引起广泛的关注,应用场景也逐渐延伸到医学图像领域,先后出现了众多优秀的研究成果.本文首先介绍了GAN的理论背景及衍生出的典型变体,特别是多种用于医学图像转换领域的基础GAN模型.随后从多种不同的目标任务和训练方式出发,对前人的研究成果进行了归纳总结,并对优缺点进行了分析.最后就目前GAN在医学图像转换领域存在的不足以及未来的发展方向进行了细致讨论.

关键词: 生成对抗网络(GAN), 医学影像, 图像转换, 多模态, 深度学习

Abstract:

In recent years, the generative adversarial network (GAN) has attracted widespread attention with its unique adversarial training mechanism. Its applications have gradually extended to the field of medical imaging, and much excellent research has emerged. This paper reviews the research progress of the popular application for GAN in medical image translation. It starts with an introduction to the basic concepts of GAN and its typical variants, emphasizing on several GANs related to medical image translation. Then, the recent progress is summarized and analyzed from the perspectives of different target tasks and training modes. Finally, the remaining challenges of GAN in medical image translation and the directions of future development are discussed.

Key words: generative adversarial network (GAN), medical image, image translation, multimodal, deep learning

中图分类号: