波谱学杂志 ›› 2019, Vol. 36 ›› Issue (4): 437-445.doi: 10.11938/cjmr20192721

• 研究论文 • 上一篇    下一篇

基于深度递归级联卷积神经网络的并行磁共振成像方法

程慧涛1,2, 王珊珊3, 柯子文1, 贾森3, 程静3, 丘志浪3, 郑海荣3, 梁栋1,2   

  1. 1. 医学人工智能研究中心(中国科学院 深圳先进技术研究院), 广东 深圳 518055;
    2. 中国科学院大学, 北京 100049;
    3. 保罗C. 劳特伯生物医学成像研究中心(中国科学院 深圳先进技术研究院), 广东 深圳 518055
  • 收稿日期:2019-03-15 出版日期:2019-12-05 发布日期:2019-05-30
  • 通讯作者: 梁栋 E-mail:dong.liang@siat.ac.cn
  • 基金资助:
    国家重点研发计划(2017YFC0108802).

A Deep Recursive Cascaded Convolutional Network for Parallel MRI

CHENG Hui-tao1,2, WANG Shan-shan3, KE Zi-wen1, JIA Sen3, CHENG Jing3, QIU Zhi-lang3, ZHENG Hai-rong3, LIANG Dong1,2   

  1. 1. Research Center for Medical AI(Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Shenzhen 518055, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Paul C. Lauterbur Research Center for Biomedical Imaging(Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences), Shenzhen 518055, China
  • Received:2019-03-15 Online:2019-12-05 Published:2019-05-30

摘要: 快速磁共振成像是磁共振研究领域重要的课题之一.随着大数据和深度学习的兴起,神经网络成为快速磁共振技术的重要方法.然而网络性能表现和网络参数量之间较难取得平衡,且对于多通道数据重建的并行成像问题,相关研究较少.本文构建了一种深度递归级联卷积神经网络结构,用于处理并行成像问题.这种网络结构在减少网络参数量的同时,能够尽可能地提高网络的表达能力,提高网络重建的精确度.实验结果表明,相较于传统并行成像方法,通过训练好的神经网络对欠采样磁共振数据进行重建,可以得到更准确的重建结果,且重建时间大大缩短.

关键词: 快速磁共振成像, 并行成像, 深度学习, 卷积神经网络, 先验信息

Abstract: Fast magnetic resonance imaging (MRI) has been attracting more and more research interests in recent years. With the emergence of big data and development of advanced deep learning algorithms, neural network has become a common and effective tool for image reconstruction in fast MRI. One main challenge to the deep learning-based methods for fast MRI reconstruction is the trade-off between the network performance and the network capacity. Few previous studies have used the deep learning-based methods in parallel imaging. In this work, a deep recursive cascaded convolutional network (DRCCN) architecture was designed for parallel MRI, with reduced number of network parameters while maintaining a satisfactory performance. The experimental results demonstrated that, compared to the classical methods, image reconstruction with the well-trained DRCCN networks were more accurate and less time consuming.

Key words: fast magnetic resonance imaging, parallel imaging, deep learning, convolutional neural network, prior knowledge

中图分类号: