波谱学杂志 ›› 2022, Vol. 39 ›› Issue (3): 291-302.doi: 10.11938/cjmr20212918

• 研究论文 • 上一篇    下一篇

基于变分推断的磁共振图像群组配准

周勤,王远军*()   

  1. 上海理工大学 医学影像技术研究所, 上海 200093
  • 收稿日期:2021-05-13 出版日期:2022-09-05 发布日期:2021-08-27
  • 通讯作者: 王远军 E-mail:yjusst@126.com
  • 基金资助:
    国家自然科学基金资助项目(61201067);上海市自然科学基金资助项目(18ZR1426900)

Groupwise Registration for Magnetic Resonance Image Based on Variational Inference

Qin ZHOU,Yuan-jun WANG*()   

  1. Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2021-05-13 Online:2022-09-05 Published:2021-08-27
  • Contact: Yuan-jun WANG E-mail:yjusst@126.com

摘要:

为解决基于深度学习的成对配准方法精度低和传统配准算法耗时长的问题,本文提出一种基于变分推断的无监督端到端的群组配准以及基于局部归一化互相关(NCC)和先验的配准框架,该框架能够将多个图像配准到公共空间并有效地控制变形场的正则化,且不需要真实的变形场和参考图像.该方法得到的预估变形场可建模为概率生成模型,使用变分推断的方法求解;然后借助空间转换网络和损失函数来实现无监督方式训练.对于公开数据集LPBA40的3D脑磁共振图像配准任务,测试结果表明:本文所提出的方法与基线方法相比,具有较好的Dice得分、运行时间少且产生更好的微分同胚域,同时对噪声具有鲁棒性.

关键词: 深度学习, 群组配准, 变分推断, 可变形配准

Abstract:

To address the low precision of pairwise registration method based on the deep learning and the time-consuming nature of traditional registration algorithm, this paper presents a method of unsupervised end-to-end groupwise registration based on variational inference, as well as a registration framework based on normalized cross correlation (NCC) and prior knowledge. The framework can warp all images in the group into a common space and effectively control the deformation field of the regularization, and it doesn't need a real deformation field or a reference image. The estimation of deformation field by this method can be modeled as a probability generation model and solved by variational inference. Then unsupervised training is implemented with the help of spatial transformer network and loss function. The registration results of 3D brain magnetic resonance image from the public data set LPBA40 show that: compared with the baseline method, the proposed method has better Dice score, less running time, better diffeomorphisms domain, and is robust to noise.

Key words: deep learning, groupwise registration, variational inference, deformable registration

中图分类号: