波谱学杂志 ›› 2023, Vol. 40 ›› Issue (2): 111-121.doi: 10.11938/cjmr20223007
郭江峰1,2,*(),MACMILLAN Bryce2,BALCOM Bruce2
收稿日期:
2022-07-11
出版日期:
2023-06-05
在线发表日期:
2022-08-23
通讯作者:
郭江峰
E-mail:jguo7@cup.edu.cn
基金资助:
GUO Jiangfeng1,2,*(),MACMILLAN Bryce2,BALCOM Bruce2
Received:
2022-07-11
Published:
2023-06-05
Online:
2022-08-23
Contact:
GUO Jiangfeng
E-mail:jguo7@cup.edu.cn
摘要:
磁共振技术具有非破坏性、对高分子链运动敏感等特点,是一种能够在分子水平上表征高分子系统相态结构和动力学特征的常用技术.本文利用T1-T2*弛豫相关研究了聚氨酯橡胶的相态结构和分子动力学特征,并用高斯衰减和指数衰减模型分析了聚氨酯橡胶的T1-T2*数据.聚氨酯橡胶的T1-T2*谱显示了三种类型的信号:晶体氢组分的T2*最短,过渡相氢组分具有中等的T2*,非晶体氢组分的T2*最长;但这三种氢组分表现出相近的T1,且T1随着聚氨酯橡胶硬度的增加或温度的降低而逐渐降低.三种氢组分的磁共振信号强度随聚氨酯橡胶的硬度和温度的变化而变化.随着聚氨酯橡胶硬度的增加,晶体氢组分含量增加,非晶体氢组分和过渡相氢组分的含量降低;随着温度的增加,晶体氢组分含量减少,过渡相氢组分含量保持不变,而非晶体氢组分含量增加.另外,聚氨酯橡胶的硬软比随温度的升高而降低.这些结果表明T1-T2*弛豫相关可用于聚氨酯橡胶的相态结构和动力学评价.
中图分类号:
郭江峰,MACMILLAN Bryce,BALCOM Bruce. 基于T1-T2*弛豫相关的聚氨酯橡胶相态结构和动力学特征[J]. 波谱学杂志, 2023, 40(2): 111-121.
GUO Jiangfeng,MACMILLAN Bryce,BALCOM Bruce. Insights into the Phase Structure and Dynamics of Polyurethane Rubber Using T1-T2* Relaxation Correlation[J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 111-121.
表2
基于T1-T2*谱测量的40A、80A和75D聚氨酯橡胶T1、T2*及信号积分强度
PUR样品 | 信号I | 信号II | 信号III | 总信号强度 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1/ms | T2*/μs | 信号强度 | T1/ms | T2*/μs | 信号强度 | T1/ms | T2*/μs | 信号强度 | ||||
40A | 360 | 18 | 2.60×105 | 360 | 39 | 7.40×105 | 323 | 121 | 3.08×105 | 1.31×106 | ||
80A | 323 | 20 | 4.03×105 | 335 | 38 | 6.81×105 | 301 | 106 | 2.20×105 | 1.30×106 | ||
75D | 217 | 20 | 1.07×106 | 234 | 46 | 2.88×105 | 225 | 167 | 1.61×105 | 1.52×106 |
表3
基于T1-T2*谱计算的75D聚氨酯橡胶不同温度下T1、T2*及信号积分强度
温度/℃ | 信号I | 信号II | 信号III | 总信号强度 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1/ms | T2*/μs | 信号强度 | T1/ms | T2*/μs | 信号强度 | T1/ms | T2*/μs | 信号强度 | ||||
0 | 217 | 20 | 1.07×106 | 234 | 46 | 2.88×105 | 225 | 167 | 1.61×105 | 1.52×106 | ||
20 | 217 | 20 | 8.81×105 | 217 | 51 | 3.06×105 | 217 | 202 | 2.69×105 | 1.46×106 | ||
40 | 242 | 21 | 7.34×105 | 242 | 50 | 2.83×105 | 242 | 219 | 3.71×105 | 1.39×106 | ||
60 | 280 | 21 | 6.04×105 | 290 | 52 | 2.62×105 | 280 | 245 | 4.38×105 | 1.30×106 | ||
80 | 355 | 21 | 4.98×105 | 355 | 55 | 2.46×105 | 355 | 258 | 4.69×105 | 1.21×106 |
[1] |
AKINDOYO J O, BEG M D, GHAZALI S, et al. Polyurethane types, synthesis and applications-a review[J]. RSC Adv, 2016, 6 (115): 114453-114482.
doi: 10.1039/C6RA14525F |
[2] |
BOUTAR Y, NAÏMI S, MEZLINI S, et al. Fatigue resistance of an Aluminium one-component polyurethane adhesive joint for the automotive industry: Effect of surface roughness and adhesive thickness[J]. Inter J Adhes Adhes, 2018, 83: 143-152.
doi: 10.1016/j.ijadhadh.2018.02.012 |
[3] |
MILLS D J, JAMALI S S, PAPROCKA K. Investigation into the effect of nano-silica on the protective properties of polyurethane coatings[J]. Surf Coat Tech, 2012, 209: 137-142.
doi: 10.1016/j.surfcoat.2012.08.056 |
[4] |
HUNG K C, TSENG C S, HSU S H. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications[J]. Adv Healthc Mater, 2014, 3(10): 1578-1587.
doi: 10.1002/adhm.v3.10 |
[5] | ZHANG Y L, WU T H, ZHANG Y, et al. Influence of polyurethane rubber hardness on internal high pressure forming for thin-walled T-tube[J]. Forg Stamp Techn, 2022, 47(1): 99-105. |
张云峦, 吴天华, 张羽, 等. 聚氨酯橡胶硬度对薄壁三通管内高压成形的影响[J]. 锻压技术, 2022, 47(1): 99-105. | |
[6] | HUANG W, SU Y P, HAN L T, et al. Experimental study on vertical performance of polyurethane rubber shock absorption bearing[J]. J Build Struct, 2020, 41(S2): 70-76. |
黄玮, 苏幼坡, 韩流涛, 等. 聚氨酯橡胶减震支座竖向性能试验研究[J]. 建筑结构学报, 2020, 41(S2): 70-76. | |
[7] | ASSINK R A. The study of domain structure in polyurethanes by nuclear magnetic resonance[J]. J Polym Sci Polym Phys Edit, 1977, 15: 59-69. |
[8] | HEPBURN C. Polyurethane elastomers[M]. Springer Science & Business Media, 2012. |
[9] |
GAUR M S, RATHORE B S, SINGH P K, et al. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites[J]. J Therm Anal Calorim, 2010, 101(1): 315-321.
doi: 10.1007/s10973-010-0675-2 |
[10] |
ZHAO J, HOOGENBOOM R, VAN ASSCHE G, et al. Demixing and remixing kinetics of poly (2-isopropyl-2-oxazoline) (PIPOZ) aqueous solutions studied by modulated temperature differential scanning calorimetry[J]. Macromolecules, 2010, 43(16): 6853-6860.
doi: 10.1021/ma1012368 |
[11] |
CAVALLARO G, DONATO D I, LAZZARA G, et al. Determining the selective impregnation of waterlogged archaeological woods with poly (ethylene) glycols mixtures by differential scanning calorimetry[J]. J Therm Anal Calorim, 2013, 111(2): 1449-1455.
doi: 10.1007/s10973-012-2528-7 |
[12] |
THOMAS E M, BRADY M A, NAKAYAMA H, et al. X-Ray scattering reveals ion-induced microstructural changes during electrochemical gating of poly (3-Hexylthiophene)[J]. Adv Funct Mater, 2018, 28(44): 1803687.
doi: 10.1002/adfm.v28.44 |
[13] |
ZHANG X Q, SCHNEIDER K, LIU G M, et al. Deformation-mediated superstructures and cavitation of poly (L-lactide): In-situ small-angle X-ray scattering study[J]. Polymer, 2012, 53(2): 648-656.
doi: 10.1016/j.polymer.2011.12.002 |
[14] |
TODA A, TAGUCHI K, NOZAKI K, et al. Crystallization and melting of poly (butylene terephthalate) and poly (ethylene terephthalate) investigated by fast-scan chip calorimetry and small angle X-ray scattering[J]. Polymer, 2020, 192: 122303.
doi: 10.1016/j.polymer.2020.122303 |
[15] |
CHEUNG T T P, GERSTEIN B C. 1H nuclear magnetic resonance studies of domain structures in polymers[J]. J Appl Phys, 1981, 52(9): 5517-5528.
doi: 10.1063/1.329534 |
[16] |
WEGLARZ W P, PEEMOELLER H, RUDIN A. Characterization of annealed isotactic polypropylene in the solid state by 2D time-domain 1H NMR[J]. J Polym Sci Part B Polym Phys, 2000, 38(19): 2487-2506.
doi: 10.1002/(ISSN)1099-0488 |
[17] | WANG L, XIAO L Z, GUO L, et al. Nuclear magnetic resonance characterization of nano self-assembly γ-Al2O3 pore structure[J]. Acta Phys Chim Sin, 2017, 33(8): 1589-1598. |
王琳, 肖立志, 郭龙, 等. 纳米自组装γ-Al2O3孔隙结构的核磁共振表征[J]. 物理化学学报, 2017, 33(8): 1589-1598. | |
[18] | LI Z R, MENG Q A, GUAN D H, et al. NMR studies on self diffusion coefficients of lithium ions in PAN-based gel polymer electrolytes[J]. Acta Phys Sin, 1999, 48(6): 202-205. |
李子荣, 孟庆安, 管荻华, 等. PAN为基凝胶聚合物电解质自扩散系数的NMR研究[J]. 物理学报, 1999, 48(6): 202-205. | |
[19] | WU M Y, YONG Z G. Analysis of linear urethane predolymer by 1H-NMR spectroscopy[J]. Chinese J Magn Reson, 1986, 3(3): 223-227. |
吴美玉, 雍忠根. 用1H-NMR法分析线性聚氨酯预聚体[J]. 波谱学杂志, 1986, 3(3): 223-227. | |
[20] | LI C F, ZHU X R. An NMR and FT-IR study on polyether modified silicon surfactant[J]. Chinese J Magn Reson, 2014, 31(2): 222-231. |
李春发, 朱雪荣. 聚醚改性有机硅表面活性剂的核磁共振及红外光谱表征[J]. 波谱学杂志, 2014, 31(2): 222-231. | |
[21] |
SCHÄLER K, ACHILLES A, BÄRENWALD R, et al. Dynamics in crystallites of poly (ε-caprolactone) as investigated by solid-state NMR[J]. Macromolecules, 2013, 46(19): 7818-7825.
doi: 10.1021/ma401532v |
[22] |
PAPON A, SAALWÄCHTER K, SCHÄLER K, et al. Low-field NMR investigations of nanocomposites: polymer dynamics and network effects[J]. Macromolecules, 2011, 44(4): 913-922.
doi: 10.1021/ma102486x |
[23] |
ZHU H J, HUININK H P, ADAN O C G, et al. NMR study of the microstructures and water-polymer interactions in cross-linked polyurethane coatings[J]. Macromolecules, 2013, 46(15): 6124-6131.
doi: 10.1021/ma401256n |
[24] |
DISSANAYAKE D S, SHEINA E, BIEWER M C, et al. Determination of absolute molecular weight of regioregular poly (3-hexylthiophene) by 1H-NMR analysis[J]. J Polym Sci Part A Polym Chem, 2017, 55(1): 79-82.
doi: 10.1002/pola.v55.1 |
[25] | WEN L, LI C F. Structure and configuration analyses of a nucleating agent for isotactic polypropylene crystallization[J]. Chinese J Magn Reson, 2020, 37(3): 291-299. |
温亮, 李春发. 等规聚丙烯成核剂的结构和构型分析[J]. 波谱学杂志, 2020, 37(3): 291-299. | |
[26] | YAN K, BAI Z W, HUANG S H. NMR signal separation of ionic liquids by poly (sodium-p-styrenesulfonate)-assisted chromatographic NMR spectroscopy[J]. Magn Reson Lett, 2021, 1(2): 153-159. |
[27] | NAVEED K, WANG L, YU H J, et al. Study on the synthesis of spin labeled poly (styrene-co-maleic acid)s and their segmental motion[J]. Magn Reson Lett, 2022, 2(2), 80-90. |
[28] |
FERRINI V, FORTE C, GEPPI M, et al. Correlation between 1H FID and T1ρ components in heterogeneous polymer systems: an application to SBS[J]. Solid State Nucl Magn Reson, 2005, 27(4): 215-222.
doi: 10.1016/j.ssnmr.2004.11.005 |
[29] |
GHOSE S, ISAYEV A I, VON MEERWALL E. Effect of ultrasound on thermoset polyurethane: NMR relaxation and diffusion measurements[J]. Polymer, 2004, 45(11): 3709-3720.
doi: 10.1016/j.polymer.2004.03.053 |
[30] |
MOWERY D M, ASSINK R A, CELINA M. Sensitivity of proton NMR relaxation times in a HTPB based polyurethane elastomer to thermo-oxidative aging[J]. Polymer, 2005, 46(24): 10919-10924.
doi: 10.1016/j.polymer.2005.08.093 |
[31] |
BESGHINI D, MAURI M, SIMONUTTI R. Time domain NMR in polymer science: from the laboratory to the industry[J]. Appl Sci, 2019, 9(9): 1801.
doi: 10.3390/app9091801 |
[32] |
ZHANG R C, YU S, CHEN S L, et al. Reversible cross-linking, microdomain structure, and heterogeneous dynamics in thermally reversible cross-linked polyurethane as revealed by solid-state NMR[J]. J Phys Chem B, 2014, 118(4): 1126-1137.
doi: 10.1021/jp409893f |
[33] |
CHAVHAN G B, BABYN P S, THOMAS B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications[J]. Radiographics, 2009, 29(5): 1433-1449.
doi: 10.1148/rg.295095034 |
[34] | XIE R H, XIAO L Z, LIU J J, et al. A method for multiple echo trains jointing inversion of NMR relaxation measurements[J]. Chinese J Geophys, 2009, 52(11): 2913-2919. |
谢然红, 肖立志, 刘家军, 等. 核磁共振多回波串联合反演方法[J]. 地球物理学报, 2009, 52(11): 2913-2919. | |
[35] | ZHOU X L, NIE S D, WANG Y J, et al. A review on the inversion methods in 2D NMR[J]. Chinese J Magn Reson, 2013, 30(2): 293-305. |
周小龙, 聂生东, 王远军, 等. 核磁共振二维谱反演技术综述[J]. 波谱学杂志, 2013, 30(2): 293-305. | |
[36] |
ZAMIRI M S, MACMILLAN B, MARICA F, et al. Petrophysical and geochemical evaluation of shales using magnetic resonance T1-T2* relaxation correlation[J]. Fuel, 2021, 284: 119014.
doi: 10.1016/j.fuel.2020.119014 |
[37] | ENJILELA R, GUO J F, MACMILLAN B, et al. T1-T2* relaxation correlation measurements[J]. J Magn Reson, 2021; 326, 106961. |
[38] |
GUO J F, MACMILLAN B, ZAMIRI S, et al. Magnetic resonance T1-T2* and T1ρ-T2* relaxation correlation measurements in solid-like materials with non-exponential decays[J]. J Magn Reson, 2021, 328: 107005.
doi: 10.1016/j.jmr.2021.107005 |
[39] |
SCHÄLER K, ROOS M, MICKE P, et al. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast[J]. Solid State Nucl Magn Reson, 2015, 72: 50-63.
doi: 10.1016/j.ssnmr.2015.09.001 pmid: 26404771 |
[40] |
SÁNCHEZ-ADSUAR M S, PASTOR-BLAS M M, MARTÍN-MARTÍNEZ J M. Properties of polyurethane elastomers with different hard/soft segment ratio[J]. J Adhesion, 1998, 67(1-4): 327-345.
doi: 10.1080/00218469808011115 |
[41] |
ANDREAS M, HERTLEIN C, SAALWÄCHTER K. A robust proton NMR method to investigate hard/soft ratios, crystallinity, and component mobility in polymers[J]. Macromol Chem Phys, 2006, 207(13): 1150-1158.
doi: 10.1002/(ISSN)1521-3935 |
[42] |
SCALAPINO D J. Curie law for Anderson's model of a dilute alloy[J]. Phys Rev Lett, 1966, 16(21): 937-939.
doi: 10.1103/PhysRevLett.16.937 |
[1] | 赵蓓蓓,占建华,胡琴,朱勤俊,刘买利,张许. 细胞色素c甲硫氨酸氧化机制的NMR研究[J]. 波谱学杂志, 2023, 40(3): 246-257. |
[2] | 王峰,刘庭伟,徐雅洁,郁朋,王亚,彭博文,杨晓冬. 一种带外部锁场通道的小型化核磁共振射频探头设计[J]. 波谱学杂志, 2023, 40(3): 332-340. |
[3] | 方羿,万倩,袁家文,林绍强,李烨,刘新,郑海荣,邹超. 三种氘标记的葡萄糖在大鼠脑胶质瘤细胞中的代谢特征对比[J]. 波谱学杂志, 2023, 40(3): 239-245. |
[4] | 董洪春,张志兰,王宁,唐丹丹,裘子慧,舒婕. 基于固体核磁共振多次交叉极化的定量检测优化技术[J]. 波谱学杂志, 2023, 40(2): 136-147. |
[5] | 王远方,王小花,舒畅,张许,刘买利,曾丹云. 溶液中ATAD2溴结构域聚集行为的研究[J]. 波谱学杂志, 2023, 40(2): 169-178. |
[6] | 贺彩艳,肖宇情,李申慧,徐君,邓风. 固体NMR研究MOFs吸附和分离过程中的主客体相互作用[J]. 波谱学杂志, 2023, 40(2): 192-206. |
[7] | 张融,王伟,高怡,刘财广,王振林,覃莹瑶,张宫. 页岩油储层T2-T1二维核磁共振测量参数敏感性分析[J]. 波谱学杂志, 2023, 40(2): 122-135. |
[8] | 赵昶,龚洲. 顺磁核磁共振技术研究蛋白质遭遇复合物的动态结构[J]. 波谱学杂志, 2023, 40(2): 148-157. |
[9] | 慈杰,杨雪,辛家祥,魏达秀,姚叶锋. 用于指导仲氢诱导核极化状态保存的己烯分子中五自旋的单重态制备和寿命研究[J]. 波谱学杂志, 2023, 40(1): 30-38. |
[10] | 师光辉,肖立志,廖广志,罗嗣慧,侯学理,卢亚普. 低场核磁共振仪器振铃抑制新方法及其电路实现[J]. 波谱学杂志, 2023, 40(1): 68-78. |
[11] | 占建华,胡琴,朱勤俊,蒋滨,张许,刘买利. 基于磁共振的胞浆中无标记酵母细胞色素c构象变化追踪[J]. 波谱学杂志, 2023, 40(1): 22-29. |
[12] | 马开阳,乔文成,王雪璐,姚叶锋. 二甲基胺阳离子掺杂甲胺铅溴钙钛矿材料的固体NMR研究[J]. 波谱学杂志, 2023, 40(1): 10-21. |
[13] | 覃瑞,王超,王强,胡敏,李金林,徐君,邓风. SSZ-13分子筛上甲醇转化过程中甲氧基物种的生成与活性研究[J]. 波谱学杂志, 2022, 39(4): 439-447. |
[14] | 张啸阳, 姚守权, 徐俊成, 蒋瑜. 基于磁通门和时域数字鉴频的磁场锁定系统[J]. 波谱学杂志, 2022, 39(4): 448-458. |
[15] | 裴云山, 张偲, 刘晓黎, 成凯, 张则婷, 李从刚. 蛋白质二硫键异构酶与α-突触核蛋白的相互作用及对其聚集的影响[J]. 波谱学杂志, 2022, 39(4): 381-392. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 268
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 232
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||