[1] |
SAREWICZ M, OSYCZKA A. Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling[J]. Physiol Rev, 2015, 95(1): 219-243.
doi: 10.1152/physrev.00006.2014
pmid: 25540143
|
[2] |
BAISTROCCHI P, BANCI L, BERTINI I, et al. Three-dimensional solution structure of Saccharomyces cerevisiae reduced iso-1-cytochrome c[J]. Biochemistry, 1996, 35(43): 13788-13796.
pmid: 8901521
|
[3] |
BANCI L, BERTINI I, BREN K L, et al. Solution structure of oxidized saccharomyces cerevisiae iso-1-cytochrome c[J]. Biochemistry, 1997, 36(29): 8992-9001.
pmid: 9220987
|
[4] |
FANG Z P, SUN P, WANG Q W, et al. Conformational change of wild type cytochrome c characterized by NMR spectroscopy at natural isotropic abundance[J]. Chinese J Magn Reson, 2019, 36 (4): 481-489.
|
|
方仲佩, 孙鹏, 王倩文, 等. 天然同位素丰度野生型酵母细胞色素c构象变化的核磁共振检测[J]. 波谱学杂志, 2019, 36 (4): 481-489.
|
[5] |
BROWN G C, BORUTAITE V. Regulation of apoptosis by the redox state of cytochrome c[J]. BBA-Bioenergetics, 2008, 1777(7-8): 877-881.
doi: 10.1016/j.bbabio.2008.03.024
|
[6] |
MADEO F, HERKER E, WISSING S, et al. Apoptosis in yeast[J]. Curr Opin Microbiol, 2004, 7(6): 655-660.
doi: 10.1016/j.mib.2004.10.012
pmid: 15556039
|
[7] |
OW Y P, GREEN D R, HAO Z Y, et al. Cytochrome c: functions beyond respiration[J]. Nat Rev Mol Cell Biol, 2008, 9(7): 532-542.
|
[8] |
RIPPLE M O, ABAJIAN M, SPRINGETT R. Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization[J]. Apoptosis, 2010, 15(5): 563-573.
doi: 10.1007/s10495-010-0455-2
pmid: 20094799
|
[9] |
BORUTAITE V, BROWN G C. Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state[J]. J Biol Chem, 2007, 282(43): 31124-31130.
doi: 10.1074/jbc.M700322200
pmid: 17690099
|
[10] |
MENDEZ D L, AKEY I V, AKEY C W, et al. Oxidized or reduced cytochrome c and axial ligand variants all form the apoptosome in vitro[J]. Biochemistry, 2017, 56(22): 2766-2769.
doi: 10.1021/acs.biochem.7b00309
|
[11] |
MUENZNER J, TOFFEY J R, HONG Y N, et al. Becoming a peroxidase: Cardiolipin-induced unfolding of cytochrome c[J]. J Phys Chem B, 2013, 117(42): 12878-12886.
doi: 10.1021/jp402104r
|
[12] |
VEITCH N C. Horseradish peroxidase: a modern view of a classic enzyme[J]. Phytochemistry, 2004, 65(3): 249-259.
pmid: 14751298
|
[13] |
HANNIBAL L, TOMASINA F, CAPDEVILA D A, et al. Alternative conformations of cytochrome c: Structure, function, and detection[J]. Biochemistry, 2016, 55(3): 407-428.
doi: 10.1021/acs.biochem.5b01385
pmid: 26720007
|
[14] |
YIN V, SHAW G S, KONERMANN L. Cytochrome c as a peroxidase: Activation of the precatalytic native state by H2O2-induced covalent modifications[J]. J Am Chem Soc, 2017, 139(44): 15701-15709.
doi: 10.1021/jacs.7b07106
|
[15] |
MORENO-BELTRAN B, GUERRA-CASTELLANO A, DIAZ-QUINTANA A, et al. Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48[J]. Proc Natl Acad Sci U S A, 2017, 114(15): E3041-E3050.
|
[16] |
BANCI L, BERTINI I, REDDIG T, et al. Monitoring the conformational flexibility of cytochrome c at low ionic strength by 1H-NMR spectroscopy[J]. Eur J Biochem, 2010, 256(2): 271-278.
doi: 10.1046/j.1432-1327.1998.2560271.x
|
[17] |
KOU X H, LIU Y X, LIU X H, et al. Visualizing the pre-active conformation of response regulator PhoBNF20D in its apo state[J]. Chinese J Magn Reson, 2019, 36(2): 164-171.
|
|
寇新慧, 刘乙祥, 刘兴弘, 等. 探测应答调控蛋白PhoBNF20D自由态中存在的Pre-Active构象[J]. 波谱学杂志, 2019, 36(2): 164-171.
|
[18] |
CROWLEY P B, CHOW E, PAPKOVSKAIA T. Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy[J]. ChemBioChem, 2011, 12(7): 1043-1048.
doi: 10.1002/cbic.201100063
|
[19] |
NYGAARD R, ZOU Y, DROR R O, et al. The dynamic process of beta(2)-adrenergic receptor activation[J]. Cell, 2013, 152(3): 532-542.
doi: 10.1016/j.cell.2013.01.008
|
[20] |
KERFAH R, PLEVIN M J, SOUNIER R, et al. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins[J]. Current Opinion in Structural Biology, 2015, 32: 113-122.
doi: 10.1016/j.sbi.2015.03.009
pmid: 25881211
|
[21] |
KLUCK R M, ELLERBY L M, ELLERBY H M, et al. Determinants of cytochrome c pro-apoptotic activity - the role of lysine 72 trimethylation[J]. J Biol Chem, 2000, 275(21): 16127-16133.
doi: 10.1074/jbc.275.21.16127
|
[22] |
SUN P, WANG Q W, YUAN B, et al. Monitoring alkaline transitions of yeast iso-1 cytochrome c at natural isotopic abundance using trimethyllysine as a native NMR probe[J]. Chem Commun, 2018, 54(89): 12630-12633.
doi: 10.1039/C8CC07605G
|
[23] |
SZABO C M, SANDERS L K, LE H C, et al. Expression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and H-1,C-13 and N-15 chemical shift assignments by multidimensional NMR[J]. Febs Letters, 2000, 482(1-2): 25-30.
doi: 10.1016/S0014-5793(00)02032-9
|
[24] |
NAIYER A, KHAN B, HUSSAIN A, et al. Stability of uniformly labeled (13C and 15N) cytochrome c and its L94G mutant[J]. Sci Rep, 2021, 11(1): 6804.
doi: 10.1038/s41598-021-86332-w
|
[25] |
HAMPTON M B, ZHIVOTOVSKY B, SLATER A F G, et al. Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts[J]. Biochem J, 1998, 329: 95-99.
doi: 10.1042/bj3290095
|
[26] |
COLON W, WAKEM L P, SHERMAN F, et al. Identification of the predominant non-native histidine ligand in unfolded cytochrome c[J]. Biochemistry, 1997, 36(41): 12535-12541.
pmid: 9376358
|
[27] |
NELSON C J, BOWLER B E. pH dependence of formation of a partially unfolded state of a Lys 73→His variant of iso-1-cytochrome c: Implications for the alkaline conformational transition of cytochrome c[J]. Biochemistry, 2000, 39(44): 13584-13594.
doi: 10.1021/bi0017778
|
[28] |
YIN V, MIAN S H, KONERMANN L. Lysine carbonylation is a previously unrecognized contributor to peroxidase activation of cytochrome c by chloramine-T[J]. Chem Sci, 2019, 10(8): 2349-2359.
doi: 10.1039/C8SC03624A
|
[29] |
DAI D F, CHIAO Y A, MARCINEK D J, et al. Mitochondrial oxidative stress in aging and healthspan[J]. Longevity & Healthspan, 2014, 3: 6.
|