[1] |
SONG Y Q. Low field magnetic resonance: multi-dimensional experiments of relaxation and diffusion[J]. Chinese J Magn Reson, 2015, 32(2): 141-149.
|
|
宋一桥. 低场核磁共振: 弛豫和扩散的多维实验[J]. 波谱学杂志, 2015, 32(2): 141-149.
|
[2] |
GU Z B, LIU W. The inversion of two-dimensional NMR map[J]. Chinese J Magn Reson, 2007, 24(3): 311-319.
|
|
顾兆斌, 刘卫. 核磁共振二维谱反演[J]. 波谱学杂志, 2007, 24(3): 311-319.
|
[3] |
XIE R H, XIAO L Z, LU D W. T2-T1 two dimensional NMR method for reservoir fluid identification[J]. Logging Technology, 2009, 33(1): 26-31.
|
|
谢然红, 肖立志, 陆大卫. 识别储层流体的(T2-T1)二维核磁共振方法[J]. 测井技术, 2009, 33(1): 26-31.
|
[4] |
TAN M J, ZOU Y L, ZHANG J Y, et al. Numerical simulation of (T2, T1) 2D NMR and fluid responses[J]. Applied Geophysics, 2012, 9(4): 401-413.
doi: 10.1007/s11770-012-0351-3
|
|
谭茂金, 邹友龙, 张晋言, 等. (T2, T1)二维核磁共振数值模拟与流体响应分析[J]. Applied Geophysics, 2012, 9(4): 401-413.
doi: 10.1007/s11770-012-0351-3
|
[5] |
XIE R H, XIAO L Z, LIU J J, et al. Joint inversion method of NMR multiple echo strings[J]. Chinese Journal of Geophysics, 2009, 52(11): 2913-2919.
|
|
谢然红, 肖立志, 刘家军, 等. 核磁共振多回波串联合反演方法[J]. 地球物理学报, 2009, 52(11): 2913-2919.
|
[6] |
ZOU Y Q, GUO P, XU Z. High-efficiency low-field nuclear magnetic resonance measurements with a Monte Carlo simulation algorithm[J]. Chinese J Magn Reson, 2018, 35(2): 226-233.
|
|
邹越崎, 郭盼, 徐征. 基于蒙特卡罗算法的低场核磁共振测量效率提高方法[J]. 波谱学杂志, 2018, 35(2): 226-233.
|
[7] |
WANG Z Z. Discuss on D-T2NMR interpretation of oil shale[J]. Natural Gas Geoscience, 2020, 31(8): 1178-184.
|
|
王志战. 页岩油储层D-T2核磁共振解释方法[J]. 天然气地球科学, 2020, 31(8): 1178-1184.
|
[8] |
LIU G Q. Challenges and countermeasures of log evaluation in unconventional petroleum exploration[J]. Petroleum Exploration and Development, 2021, 48(5): 891-902.
doi: 10.11698/PED.2021.05.02
|
|
刘国强. 非常规油气时代测井评价技术的挑战与对策[J]. 石油勘探与开发, 2021, 48(5): 891-902.
doi: 10.11698/PED.2021.05.02
|
[9] |
KAUSIK R, FELLAH K, RYLANDER E, et al. NMR relaxometry in shale and implications for logging[J]. Petrophysics, 2016, 57(4): 339-350.
|
[10] |
HAN C, Li G, BIE K, et al. Application of innovative T1-T2 fluid typing method in complex carbonate reservoir of Fengxi block[J]. Well Logging Technology, 2021, 45(1): 56-61.
|
|
韩闯, 李纲, 别康, 等. 二维核磁共振T1-T2谱在风西复杂碳酸盐岩储层流体识别中的应用[J]. 测井技术, 2021, 45(1): 56-61.
|
[11] |
SONG Y, KAUSIK R. NMR application in unconventional shale reservoirs - a new porous media research frontier[J]. Prog Nucl Magn Reson Spectro, 2019, 112-113: 17-33.
|
[12] |
BAI L H, LIU B, CHI Y A, et al. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2021, 42(6): 1389-1400.
|
|
白龙辉, 柳波, 迟亚奥, 等. 二维核磁共振技术表征页岩有机质特征的应用-以松辽盆地南部青山口组富有机质页岩为例[J]. 石油与天然气地质, 2021, 42(6): 1389-1400.
|
[13] |
KIRGIZOV D I, HOU X L, MURZAKAEV V M. Application of complex nuclear magnetic resonance measurements to super-vicious oil deposits in russian republic of tatarstan[J]. Well Logging Technology, 2017, 41(5): 506-511.
|
|
吉尔吉佐夫, 侯学理, 穆尔扎卡耶夫. 移动式全直径岩心核磁共振测量仪在俄罗斯超稠油地层评价中的应用[J]. 测井技术, 2017, 41(5): 506-511.
|
[14] |
SOPHIA A, VLADIMIR A, JULIANE A, et al. Improved halbach sensor for NMR scanning of drill cores[J]. Magn Reson Imaging, 2007, 25(4): 474-480.
pmid: 17466767
|
[15] |
TAN M J, ZOU Y L. A hybrid inversion method of (T2, D) 2D NMR logging and observation parameters effects[J]. Chinese Journal of Geophysics, 2012, 55(2): 683-629. (in Chinese)
|
|
谭茂金, 邹友龙. (T2, D)二维核磁共振测井混合反演方法与参数影响分析[J]. 地球物理学报, 2012, 55(2): 683-629.
|
[16] |
GU Z B, LIU W, SUN D Q, et al. Identify reservoir fluid types with two-dimensional NMR techniques[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(5): 83-86+188.
|
|
顾兆斌, 刘卫, 孙佃庆, 等. 基于核磁共振二维谱技术识别储层流体类型[J]. 西南石油大学学报(自然科学版), 2010, 32(5): 83-86+188.
|
[17] |
MARC F, MARIA R S. Characterization of shales using T1-T2 NMR maps[J]. J Petrol Sci Eng, 2016, 137: 55-62.
doi: 10.1016/j.petrol.2015.11.006
|
[18] |
BLOEMBERGEN N, PURCELL EM, POUND RV. Relaxation effects in nuclear magnetic resonance absorption[J]. Phys Rev, 1948, 73: 679-712.
doi: 10.1103/PhysRev.73.679
|
[19] |
SONG Y Q, VENKATARAMANAN L, HÜRLIMANN MD, et al. T2-T1 correlation spectra obtained using a fast two-dimensional Laplace inversion[J]. J Magn Reson, 2002, 154(2): 261-268.
doi: 10.1006/jmre.2001.2474
|
[20] |
ZHANG G, HE Z B, CAO W Q, et al. Effect of echo interval on apparent porosity of nuclear magnetic resonance and correction method[J]. Chinese J Magn Reson, 2020, 37 (2): 172-181.
|
|
张宫, 何宗斌, 曹文倩, 等. 回波间隔对核磁共振表观孔隙度的影响及矫正方法[J]. 波谱学杂志, 2020, 37(2): 172-181.
|
[21] |
QIN Y Y, ZHANG G, ZHANG J W, et al. Study on the influence of magnetic field intensity on T2-T1 two-dimensional nuclear magnetic resonance experiment[J]. Progress in Geophysics, 2021, 36(5): 2082-2089.
|
|
覃莹瑶, 张宫, 张嘉伟, 等. 磁场强度对T2-T1二维核磁共振实验的影响研究[J]. 地球物理学进展, 2021, 36(5): 2082-2089.
|
[22] |
ZHANG W, WANG X N. Schlumberger CMR-MagniPHI high-precision nuclear magnetic resonance logging tool[J]. Well Logging Technology, 2020, 44(3): 287.
|
|
张炜, 王小宁. 斯伦贝谢公司CMR-MagniPHI高精度核磁共振测井仪[J]. 测井技术, 2020, 44(3): 287.
|
[23] |
ANAND V, ALI M. New generation NMR tool for robust, continuous T1and T2 measurements[C]// SPWLA 56th Annual Logging Symposium. California, USA, 2015.
|
[24] |
WANG Z L, ZHANG R, ZHANG N, et al. A high-precision processing method of two-dimensional NMR logging data based on component compensation[J]. Chinese J Magn Reson, 2022, 39(2): 174-183.
|
|
王振林, 张融, 张妮, 等. 一种基于组分补偿的二维核磁共振测井数据高精度处理方法[J]. 波谱学杂志, 2022, 39(2): 174-183.
|