[1] |
SIES H. Role of metabolic H2O2 generation: redox signaling and oxidative stress[J]. J Biol Chem, 2014, 289(13): 8735-8741.
doi: 10.1074/jbc.R113.544635
|
[2] |
KATHIRESAN M, ENGLISH A M. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2[J]. Chem Sci, 2017, 8(2): 1152-1162.
doi: 10.1039/C6SC03125K
|
[3] |
ZHONG F, PLETNEVA E V. Ligation and reactivity of methionine-oxidized cytochrome c[J]. Inorg Chem, 2018, 57(10): 5754-5766.
doi: 10.1021/acs.inorgchem.8b00010
pmid: 29708337
|
[4] |
MCCALDON P, ARGOS P. Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide-sequences[J]. Proteins, 1988, 4(2): 99-122.
doi: 10.1002/(ISSN)1097-0134
|
[5] |
LUO S, LEVINE R L. Methionine in proteins defends against oxidative stress[J]. Faseb Journal, 2009, 23(2): 464-472.
doi: 10.1096/fj.08-118414
pmid: 18845767
|
[6] |
CHAO C C, MA Y S, STADTMAN E R. Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems[J]. Proc Natl Acad Sci USA, 1997, 94(7): 2969-2974.
pmid: 9096330
|
[7] |
HERSHKO A, CIECHANOVER A. The ubiquitin pathway for the degradation of intracellular proteins[J]. Prog Nucleic Acid Res Mol Biol, 1986, 33: 19-56.
|
[8] |
KEHM R, BALDENSPERGER T, RAUPBACH J, et al. Protein oxidation-formation mechanisms, detection and relevance as biomarkers in human diseases[J]. Redox Biol, 2021, 42: 101901.
doi: 10.1016/j.redox.2021.101901
|
[9] |
LIU X S, KIM C N, YANG J, et al. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c[J]. Cell, 1996, 86(1): 147-157.
doi: 10.1016/s0092-8674(00)80085-9
pmid: 8689682
|
[10] |
ALVAREZ-PAGGI D, HANNIBAL L, CASTRO M A, et al. Multifunctional cytochrome c: learning new tricks from an old dog[J]. Chem Rev, 2017, 117(21): 13382-13460.
doi: 10.1021/acs.chemrev.7b00257
|
[11] |
GUERRA-CASTELLANO A, MARQUEZ I, PEREZ-MEJIAS G, et al. Post-translational modifications of cytochrome c in cell life and Disease[J]. Int J Mol Sci, 2020, 21(22): 8483
doi: 10.3390/ijms21228483
|
[12] |
SANTUCCI R, SINIBALDI F, COZZA P, et al. Cytochrome c: An extreme multifunctional protein with a key role in cell fate[J]. Int J Biol Macromol, 2019, (136): 1237-1246.
|
[13] |
KIM J, RODRIGUEZ M E, GUO M, et al. Oxidative modification of cytochrome c by singlet oxygen[J]. Free Radical Biology & Medicine, 2008, 44(9): 1700-1711.
doi: 10.1016/j.freeradbiomed.2007.12.031
|
[14] |
WANG Z, ANDO Y, NUGRAHENI A D, et al. Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met-heme iron bond[J]. Mol Biosyst, 2014, 10(12): 3130-3137.
doi: 10.1039/c4mb00285g
pmid: 25224641
|
[15] |
IVANETICH K M, BRADSHAW J J, KAMINSKY L S. Methionine sulfoxide cytochrome-c[J]. Biochemistry, 1976, 15(5): 1144-1153.
doi: 10.1021/bi00650a029
|
[16] |
BREN K L, RAVEN E L. Locked and loaded for apoptosis[J]. Science, 2017, 356(6344): 1236.
doi: 10.1126/science.aan5587
pmid: 28642398
|
[17] |
MUENZNER J, PLETNEVA E V. Structural transformations of cytochrome c upon interaction with cardiolipin[J]. Chem Phys Lipids, 2014, (179): 57-63.
|
[18] |
TOMÁŠKOVÁ N, NOVÁK P, KOŽÁR T, et al. Early modification of cytochrome c by hydrogen peroxide triggers its fast degradation[J]. Int J Biol Macromol, 2021, (174): 413-423.
|
[19] |
YIN V, MIAN S H, KONERMANN L. Lysine carbonylation is a previously unrecognized contributor to peroxidase activation of cytochrome c by chloramine-T[J]. Chem Sci, 2019, 10(8): 2349-2359.
doi: 10.1039/C8SC03624A
|
[20] |
SHI C W, SHI P, TIAN C L. NMR studies of large protein dynamics using unnatural amino acids[J]. Chinese J Magn Reson, 2021, 38(4): 523-532.
|
|
史朝为, 石攀, 田长麟. 非天然氨基酸在蛋白质动态特性核磁共振研究中的应用[J]. 波谱学杂志, 2021, 38(4): 523-532.
|
[21] |
SCHÜTZ S, SPRANGERS R. Methyl TROSY spectroscopy: a versatile NMR approach to study challenging biological systems[J]. Prog Nucl Mag Res Sp, 2020, (116): 56-84.
|
[22] |
YU F, QIAO J, ROBBLEE J, et al. An integrated approach to unique NMR assignment of methionine methyl resonances in proteins[J]. Anal Chem, 2017, 89(3): 1610-1616.
doi: 10.1021/acs.analchem.6b03705
pmid: 28208280
|
[23] |
BROOKS D J, FRESCO J R, LESK A M, et al. Evolution of amino acid frequencies in proteins over deep time: Inferred order of introduction of amino acids into the genetic code[J]. Mol Biol Evol, 2002, 19(10): 1645-1655.
pmid: 12270892
|
[24] |
LIU M, FARRANT R D, SWEATMAN B C, et al. Observation of separate J-resolved 1H NMR spectra from CH, CH2, and CH3 groups using a maximum-quantum filter[J]. J Magn Reson Ser A, 1995, (1064-1858): 251-256.
|
[25] |
FANG Z P, SUN P, WANG Q W, et al. Conformational change of wild type cytochrome c characterized by NMR spectroscopy at natural isotropic abundance[J]. Chinese J Magn Reson, 2019, 36(4): 481-489.
|
|
方仲佩, 孙鹏, 王倩文, 等. 天然同位素丰度野生型酵母细胞色素c构象变化的核磁共振检测[J]. 2019, 36(4): 481-489.
|
[26] |
TURNER H S A D L. 13C and proton NMR studies of horse cytochrome c assignment and temperature dependence of methyl resonances[J]. Federation of European Biochemical Societies, 1986, 194(3116): 73-77.
doi: 10.1016/0014-5793(86)80054-0
|
[27] |
HIREL PH, SCHMITTER J-M, DESSEN P, et al. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid[J]. Proc Natl Acad Sci USA, 1989, 86(21): 8247-8251.
pmid: 2682640
|
[28] |
SUN P, WANG Q, YUAN B, et al. Monitoring alkaline transitions of yeast iso-1 cytochrome c at natural isotopic abundance using trimethyllysine as a native NMR probe[J]. Chem Commun (Camb), 2018, 54(89): 12630-12633.
doi: 10.1039/c8cc07605g
pmid: 30351312
|
[29] |
VOLKOV A, WORRALL J, HOLTZMANN E, et al. Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR[J]. Proc Natl Acad Sci USA, 2006, 103(50): 18945-18950.
pmid: 17146057
|
[30] |
PARAKRA R D, KLEFFMANN T, JAMESON G N L, et al. The proportion of Met80-sulfoxide dictates peroxidase activity of human cytochrome c[J]. Dalton Trans, 2018, 47(27): 9128-9135.
doi: 10.1039/c8dt02185f
pmid: 29944150
|
[31] |
BERGHUIS A M B, G. D. Oxidation state-dependent conformational changes in cytochrome c[J]. J Mol Biol, 1992, (223): 959-976.
|
[32] |
BUSHNELL G W, LOUIE G V, BRAYER G D. High-resolution 3-dimensional structure of horse heart cytochrome c[J]. J Mol Biol, 1990, (214): 585-595.
|