[1] |
YAO H Y Y, WANG J Q, YIN J Y, et al. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective[J]. Food Res Int, 2021, 143: 110290.
doi: 10.1016/j.foodres.2021.110290
|
[2] |
LIU Q Y, LIU S Y, LUO Y K, et al. Pulsed-field nuclear magnetic resonance: Status and prospects[J]. Matter Radiat Extrem, 2021, 6(2): 67-86.
|
[3] |
HERRLING M P, LACKNER S, NIRSCHL H, et al. Recent NMR/MRI studies of biofilm structures and dynamics[M]. WEBB G A Ed. Annual Reports on NMR Spectroscopy. Academic Press, 2019: 163-213.
|
[4] |
DOWNES D P, COLLINS J H P, LAMA B, et al. Characterization of brain metabolism by nuclear magnetic resonance[J]. Chemphyschem, 2019, 20(2): 216-230.
doi: 10.1002/cphc.201800917
pmid: 30536696
|
[5] |
BHASKAR N D, HAPPER W, MCCLELLAND T. Efficiency of spin exchange between rubidium spins and 129Xe nuclei in a gas[J]. Phys Rev Lett, 1982, 49(1): 25-28.
doi: 10.1103/PhysRevLett.49.25
|
[6] |
GRIESINGER C, BENNATI M, VIETH H M, et al. Dynamic nuclear polarization at high magnetic fields in liquids[J]. Prog Nucl Magn Reson Spectrosc, 2012, 64: 4-28.
doi: 10.1016/j.pnmrs.2011.10.002
|
[7] |
GRIFFIN R G. Dynamic nuclear polarization at 9T using a novel 250 gyrotron microwave source[J]. J Magn Reson, 2011, 213(2): 410-412.
doi: 10.1016/j.jmr.2011.08.015
pmid: 22152359
|
[8] |
MOMPEAN M, SANCHEZ-DONOSO R M, DE LA HOZ A, et al. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization[J]. Nat Commun, 2018, 9(1): 108.
doi: 10.1038/s41467-017-02575-0
|
[9] |
DUCKETT S B, WOOD N J. Parahydrogen-based NMR methods as a mechanistic probe in inorganic chemistry[J]. Coordin Chem Rev, 2008, 252(21-22): 2278-2291.
doi: 10.1016/j.ccr.2008.01.028
|
[10] |
PRAVDIVTSEV A N, BUNTKOWSKY G, DUCKETT S B, et al. Parahydrogen-induced polarization of amino acids[J]. Angew Chem Int Ed Engl, 2021, 60(44): 23496-23507.
doi: 10.1002/anie.202100109
|
[11] |
CANET D, AROULANDA C, MUTZENHARDT P, et al. Para-hydrogen enrichment and hyperpolarization[J]. Concept Magn Reson A, 2006, 28a(5): 321-330.
|
[12] |
KOVTUNOV K V, POKOCHUEVA E V, SALNIKOV O G, et al. Hyperpolarized NMR spectroscopy: d-DNP, PHIP, and SABRE techniques[J]. Chem Asian J, 2018, 13(15): 1857-1871.
doi: 10.1002/asia.201800551
|
[13] |
DECHENT J F, BULJUBASICH L, SCHREIBER L M, et al. Proton magnetic resonance imaging with para-hydrogen induced polarization[J]. Phys Chem Chem Phys, 2012, 14(7): 2346-2352.
doi: 10.1039/c2cp22822j
pmid: 22240943
|
[14] |
GLOGGLER S, COLELL J, APPELT S. Para-hydrogen perspectives in hyperpolarized NMR[J]. J Magn Reson, 2013, 235: 130-142.
doi: 10.1016/j.jmr.2013.07.010
pmid: 23932399
|
[15] |
TIAN J X, LIU W Q, SONG Y H, et al. Implementation of deutsch algorithm using para-hydrogen induced polarization[J]. Chinese J Magn Reson, 2015, 32(4): 618-627.
|
|
田佳欣, 刘文卿, 宋艳红, 等. 利用仲氢诱导极化技术实现Deutsch算法[J]. 波谱学杂志, 2015, 32(4): 618-627.
|
[16] |
HU H, WANG W Y, XU J, et al. 1, 3-Butadienen hydrogenation on supported Pd-Sn bimetallic catalysts investigated by parahydrogen-induced polarization[J]. Chinese J Magn Reson, 2022, 39(2): 133-143.
|
|
胡涵, 王伟宇, 徐君, 等. Pd-Sn双金属催化剂催化1, 3-丁二烯加氢反应的仲氢诱导极化研究[J]. 波谱学杂志, 2022, 39(2): 133-143.
|
[17] |
ROTH M, KINDERVATER P, RAICH H P, et al. Continuous 1H and 13C signal enhancement in NMR spectroscopy and MRI using parahydrogen and hollow-fiber membranes[J]. Angew Chem Int Ed, 2010, 122: 8536-8540.
doi: 10.1002/ange.201002725
|
[18] |
ARIYASINGHA N M, SALNIKOV O G, KOVTUNOV K V, et al. Relaxation dynamics of nuclear long-lived spin states in propane and propane-d6 hyperpolarized by parahydrogen[J]. J Phys Chem C Nanomater Interfaces, 2019, 123(18): 11734-11744.
doi: 10.1021/acs.jpcc.9b01538
|
[19] |
PILEIO G, CARRAVETTA M, LEVITT M H. Storage of nuclear magnetization as long-lived singlet order in low magnetic field[J]. Proc Natl Acad Sci U S A, 2010, 107(40): 17135-17139.
doi: 10.1073/pnas.1010570107
|
[20] |
BENGS C, SABBA M, JERSCHOW A, et al. Generalised magnetisation-to-singlet-order transfer in nuclear magnetic resonance[J]. Phys Chem Chem Phys, 2020, 22(17): 9703-9712.
doi: 10.1039/d0cp00935k
pmid: 32329499
|
[21] |
DEVIENCE S J, WALSWORTH R L, ROSEN M S. Preparation of nuclear spin singlet states using spin-lock induced crossing[J]. Phys Rev Lett, 2013, 111(17): 173002.
doi: 10.1103/PhysRevLett.111.173002
|
[22] |
PRAVDIVTSEV A N, KIRYUTIN A S, YURKOVSKAYA A V, et al. Robust conversion of singlet spin order in coupled spin-1/2 pairs by adiabatically ramped RF-fields[J]. J Magn Reson, 2016, 273: 56-64.
doi: S1090-7807(16)30194-X
pmid: 27750072
|
[23] |
HU K R, YANG X, HUANG Z M, et al. Preparing nuclear spin singlet state in a three-spin system and its application in 2D spectrum[J]. Chinese J Magn Reson, 2022, 39(1): 96-107.
|
|
胡凯瑞, 杨雪, 黄志明, 等. 三自旋体系核自旋单重态的制备与单重态二维谱的实现[J]. 波谱学杂志, 2022, 39(1): 96-107.
|
[24] |
CARRAVETTA M, LEVITT M H. Theory of long-lived nuclear spin states in solution nuclear magnetic resonance. I. Singlet states in low magnetic field[J]. J Chem Phys, 2005, 122(21): 214505.
doi: 10.1063/1.1893983
|
[25] |
KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms[J]. J Magn Reson, 2005, 172(2): 296-305.
pmid: 15649756
|
[26] |
TOSNER Z, VOSEGAARD T, KEHLET C, et al. Optimal control in NMR spectroscopy: numerical implementation in SIMPSON[J]. J Magn Reson, 2009, 197(2): 120-134.
doi: 10.1016/j.jmr.2008.11.020
pmid: 19119034
|
[27] |
STEVANATO G, ROY S S, HILL-COUSINS J, et al. Long-lived nuclear spin states far from magnetic equivalence[J]. Phys Chem Chem Phys, 2015, 17(8): 5913-5922.
doi: 10.1039/c4cp05704j
pmid: 25633837
|