波谱学杂志 ›› 2023, Vol. 40 ›› Issue (2): 148-157.doi: 10.11938/cjmr20223035
收稿日期:
2022-11-14
出版日期:
2023-06-05
在线发表日期:
2022-12-20
通讯作者:
龚洲
E-mail:gongzhou@apm.ac.cn
基金资助:
Received:
2022-11-14
Published:
2023-06-05
Online:
2022-12-20
Contact:
GONG Zhou
E-mail:gongzhou@apm.ac.cn
摘要:
蛋白质依靠短程相互作用识别配体蛋白进而行使生物学功能,其相互作用界面仅占据蛋白质总表面积的一部分.因此,蛋白质与配体蛋白需要形成一系列遭遇复合物系综结构来减少构象搜索空间以加快结合速度.由于遭遇复合物在溶液体系中存在时间短、丰度低,因而很难被传统结构生物学技术捕捉到.本文选用组氨酸磷酸载体蛋白(HPr)和酶II(EIIAGlc)复合物为研究体系,采用顺磁弛豫增强(Paramagnetic Relaxation Enhancement,PRE)技术对遭遇复合物的系综结构及动力学性质进行表征,并用分子动力学模拟方法对实验结果进行验证,发现HPr在溶液体系中首先与EIIAGlc在3个方向上形成遭遇复合物,进而促进特异性复合物的形成.该方法不仅能够在溶液体系中观察遭遇复合物系综结构,还有望应用于生物大分子领域,揭示蛋白质在复杂生理网络中的相互作用机制及动力学行为.
中图分类号:
赵昶,龚洲. 顺磁核磁共振技术研究蛋白质遭遇复合物的动态结构[J]. 波谱学杂志, 2023, 40(2): 148-157.
ZHAO Chang,GONG Zhou. Investigation of Dynamic Structure of Protein Encountering Complex with Paramagnetic NMR[J]. Chinese Journal of Magnetic Resonance, 2023, 40(2): 148-157.
[1] |
TANG C, IWAHARA J, CLORE G M. Visualization of transient encounter complexes in protein-protein association[J]. Nature, 2006, 444(7117): 383-386.
doi: 10.1038/nature05201 |
[2] |
IWAHARA J, CLORE G M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR[J]. Nature, 2006, 440(7088): 1227-1230.
doi: 10.1038/nature04673 |
[3] |
XING Q, HUANG P, YANG J, et al. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling[J]. Angew Chem Int Ed Engl, 2014, 53(43): 11501-11505.
doi: 10.1002/anie.201405976 |
[4] |
GABDOULLINE R R, WADE R C. Biomolecular diffusional association[J]. Curr Opin Struct Biol, 2002, 12(2): 204-213.
doi: 10.1016/S0959-440X(02)00311-1 |
[5] |
SCHREIBER G, HARAN G, ZHOU H X. Fundamental aspects of protein-protein association kinetics[J]. Chem Rev, 2009, 109(3): 839-860.
doi: 10.1021/cr800373w pmid: 19196002 |
[6] |
UBBINK M. The courtship of proteins: understanding the encounter complex[J]. FEBS Lett, 2009, 583(7): 1060-1066.
doi: 10.1016/j.febslet.2009.02.046 pmid: 19275897 |
[7] |
VAN SON M, SCHILDER J T, DI SAVINO A, et al. The transient complex of cytochrome c and cytochrome c peroxidase: Insights into the encounter complex from multifrequency EPR and NMR spectroscopy[J]. Chemphyschem, 2020, 21(10): 1060-1069.
doi: 10.1002/cphc.201901160 pmid: 32301564 |
[8] |
NORTHRUP S H, BOLES J O, REYNOLDS J C. Brownian dynamics of cytochrome c and cytochrome c peroxidase association[J]. Science, 1988, 241(4861): 67-70.
pmid: 2838904 |
[9] |
SCHREIBER G, FERSHT AR. Rapid, electrostatically assisted association of proteins[J]. Nat Struct Biol, 1996, 3(5): 427-431.
pmid: 8612072 |
[10] |
VIJAYAKUMAR M, WONG KY, SCHREIBER G, et al. Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on barnase and barstar[J]. J Mol Biol, 1998, 278(5): 1015-1024.
pmid: 9600858 |
[11] |
SELZER T, ALBECK S, SCHREIBER G. Rational design of faster associating and tighter binding protein complexes[J]. Nat Struct Biol, 2000, 7(7): 537-541.
pmid: 10876236 |
[12] |
ZHOU H X, SZABO A. Enhancement of association rates by nonspecific binding to DNA and cell membranes[J]. Phys Rev Lett, 2004, 93(17): 178101.
doi: 10.1103/PhysRevLett.93.178101 |
[13] |
HAREL M, COHEN M, SCHREIBER G. On the dynamic nature of the transition state for protein-protein association as determined by double-mutant cycle analysis and simulation[J]. J Mol Biol, 2007, 371(1): 180-196.
pmid: 17561113 |
[14] |
GENET J P. Asymmetric catalytic hydrogenation. Design of new Ru catalysts and chiral ligands: from laboratory to industrial applications[J]. Acc Chem Res, 2003, 36(12): 908-918.
doi: 10.1021/ar020152u |
[15] |
WORRALL J A, LIU Y, CROWLEY P B, et al. Myoglobin and cytochrome b5: a nuclear magnetic resonance study of a highly dynamic protein complex[J]. Biochemistry, 2002, 41(39): 11721-11730.
pmid: 12269814 |
[16] |
UBBINK M, BENDALL D S. Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis[J]. Biochemistry, 1997, 36(21): 6326-6335.
pmid: 9174347 |
[17] |
WORRALL J A, REINLE W, BERNHARDT R, et al. Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin[J]. Biochemistry, 2003, 42(23): 7068-7076.
pmid: 12795602 |
[18] |
BASHIR Q, SCANU S, UBBINK M. Dynamics in electron transfer protein complexes[J]. FEBS J, 2011, 278(9): 1391-1400.
doi: 10.1111/j.1742-4658.2011.08062.x pmid: 21352493 |
[19] |
HU Y F, LI C G, HE L C, et al. Mechanisms of chaperones as active assistant/protector for proteins: Insights from NMR studies[J]. Chinese J Chem, 2019, 38(4): 406-413.
doi: 10.1002/cjoc.v38.4 |
[20] |
TOLMAN J R, FLANAGAN J M, KENNEDY M A, et al. NMR evidence for slow collective motions in cyanometmyoglobin[J]. Nat Struct Biol, 1997, 4(4): 292-297.
pmid: 9095197 |
[21] | WANG J N, LIN Y L, ZHU Q J, et al. NMR assignments and characterization of the DNA-binding domain of Arabidopsis transcription factor WRKY11[J]. Magn Reson Lett, 2021, 1(2): 112-120. |
[22] |
BRUCE N J, GANOTRA G K, KOKH D B, et al. New approaches for computing ligand-receptor binding kinetics[J]. Curr Opin Struct Biol, 2018, 49: 1-10.
doi: 10.1016/j.sbi.2017.10.001 |
[23] |
DICKSON A, TIWARY P, VASHISTH H. Kinetics of ligand binding through advanced computational approaches: A review[J]. Curr Top Med Chem, 2017, 17(23): 2626-2641.
doi: 10.2174/1568026617666170414142908 pmid: 28413946 |
[24] |
DE VIVO M, MASETTI M, BOTTEGONI G, et al. Role of molecular dynamics and related methods in drug discovery[J]. J Med Chem, 2016, 59(9): 4035-4061.
doi: 10.1021/acs.jmedchem.5b01684 pmid: 26807648 |
[25] |
BERNETTI M, CAVALLI A, MOLLICA L. Protein-ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling[J]. Medchemcomm, 2017, 8(3): 534-550.
doi: 10.1039/c6md00581k pmid: 30108770 |
[26] |
SHAN Y, KIM E T, EASTWOOD M P, et al. How does a drug molecule find its target binding site?[J]. J Am Chem Soc, 2011, 133(24): 9181-9183.
doi: 10.1021/ja202726y pmid: 21545110 |
[27] |
DROR R O, PAN A C, ARLOW D H, et al. Pathway and mechanism of drug binding to G-protein-coupled receptors[J]. Proc Natl Acad Sci U S A, 2011, 108(32): 13118-13123.
doi: 10.1073/pnas.1104614108 |
[28] |
TRAN D P, KITAO A. Dissociation process of a MDM2/p53 complex investigated by parallel cascade selection molecular dynamics and the markov state model[J]. J Phys Chem B, 2019, 123(11): 2469-2478.
doi: 10.1021/acs.jpcb.8b10309 |
[29] |
DICKSON A. Mapping the ligand binding landscape[J]. Biophys J, 2018, 115(9): 1707-1719.
doi: S0006-3495(18)31102-0 pmid: 30327139 |
[30] |
PLATTNER N, NOÉ F. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models[J]. Nat Commun, 2015, 6: 7653.
doi: 10.1038/ncomms8653 pmid: 26134632 |
[31] |
SILVA D A, BOWMAN G R, SOSA-PEINADO A, et al. A role for both conformational selection and induced fit in ligand binding by the LAO protein[J]. PLoS Comput Biol, 2011, 7(5): e1002054.
doi: 10.1371/journal.pcbi.1002054 |
[32] |
REIZER J, SAIER JR M H, DEUTSCHER J, et al. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation[J]. Crit Rev Microbiol, 1988, 15(4): 297-338.
pmid: 3060316 |
[33] |
HERZBERG O, KLEVIT R. Unraveling a bacterial hexose transport pathway[J]. Curr Opin Struct Biol, 1994, 4(6): 814-822.
doi: 10.1016/0959-440X(94)90262-3 |
[34] |
WANG G, LOUIS J M, SONDEJ M, et al. Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system[J]. EMBO J, 2000, 19(21): 5635-5649.
doi: 10.1093/emboj/19.21.5635 |
[35] |
GONG Z, DING Y H, DONG X, et al. Visualizing the ensemble structures of protein complexes using chemical cross-linking coupled with mass spectrometry[J]. Biophys Rep, 2015, 1: 127-138.
doi: 10.1007/s41048-015-0015-y |
[36] |
FAWZI N L, DOUCLEFF M, SUH J Y, et al. Mechanistic details of a protein-protein association pathway revealed by paramagnetic relaxation enhancement titration measurements[J]. Proc Natl Acad Sci U S A, 2010, 107(4): 1379-1384.
doi: 10.1073/pnas.0909370107 |
[37] |
DING Y H, GONG Z, DONG X, et al. Modeling protein excited-state structures from “over-length” chemical cross-links[J]. J Biol Chem, 2017, 292(4): 1187-1196.
doi: 10.1074/jbc.M116.761841 |
[38] |
WANG G, LOUIS J M, SONDEJ M, et al. Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system[J]. EMBO J, 2000, 19(21): 5635-5649.
pmid: 11060015 |
[39] |
AN Y, CHEN L, SUN S, et al. QuikChange shuffling: a convenient and robust method for site-directed mutagenesis and random recombination of homologous genes[J]. N Biotechnol, 2011, 28(4): 320-325.
doi: 10.1016/j.nbt.2011.03.001 |
[40] |
SCHWIETERS C D, KUSZEWSKI J J, TJANDRA N, et al. The Xplor-NIH NMR molecular structure determination package[J]. J Magn Reson, 2003, 160(1): 65-73.
pmid: 12565051 |
[41] |
CHEN R, LI L, WENG Z. ZDOCK: an initial-stage protein-docking algorithm[J]. Proteins, 2003, 52(1): 80-87.
doi: 10.1002/(ISSN)1097-0134 |
[42] |
IWAHARA J, SCHWIETERS C D, CLORE G M. Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule[J]. J Am Chem Soc, 2004, 126(18): 5879-5896.
pmid: 15125681 |
[1] | 王峰,刘庭伟,徐雅洁,郁朋,王亚,彭博文,杨晓冬. 一种带外部锁场通道的小型化核磁共振射频探头设计[J]. 波谱学杂志, 2023, 40(3): 332-340. |
[2] | 王远方,王小花,舒畅,张许,刘买利,曾丹云. 溶液中ATAD2溴结构域聚集行为的研究[J]. 波谱学杂志, 2023, 40(2): 169-178. |
[3] | 裴云山, 张偲, 刘晓黎, 成凯, 张则婷, 李从刚. 蛋白质二硫键异构酶与α-突触核蛋白的相互作用及对其聚集的影响[J]. 波谱学杂志, 2022, 39(4): 381-392. |
[4] | 胡涵,王伟宇,徐君,邓风. Pd-Sn双金属催化剂催化1, 3-丁二烯加氢反应的仲氢诱导极化研究[J]. 波谱学杂志, 2022, 39(2): 133-143. |
[5] | 徐倩,陈朗,胡翔颖,李从刚,刘乙祥,姜凌. T69E模拟磷酸化修饰对Bcl-2与Nur77相互作用的影响[J]. 波谱学杂志, 2022, 39(1): 87-95. |
[6] | 胡晓东,蓝文贤,王春喜,曹春阳. 靶向肿瘤因子c-MYC基因启动区G4-DNA的小分子药物设计及核磁共振研究进展[J]. 波谱学杂志, 2021, 38(4): 503-513. |
[7] | 王子豪,徐赫,汪涛,杨善中,丁运生,魏海兵. 外型和内型C-2位单取代降冰片烯衍生物的核磁共振波谱研究[J]. 波谱学杂志, 2021, 38(3): 323-335. |
[8] | 王崇武,黄曦,石磊,陈世桢,周欣. 组织蛋白酶B响应的超极化129Xe MRI探针对肺癌细胞的超灵敏探测[J]. 波谱学杂志, 2021, 38(3): 336-344. |
[9] | 吴嘉敏,贺玉成,徐征,朱延河,姜文正. 用于土壤水分测量的磁共振射频线圈宽频匹配方法[J]. 波谱学杂志, 2021, 38(3): 414-423. |
[10] | 赵心怡,韩冬,罗红军,沈文斌,杨功俊. 德拉沙星葡甲胺波谱学数据解析[J]. 波谱学杂志, 2021, 38(2): 268-276. |
[11] | 余锦波,张偲,张则婷,徐国华,李从刚. Alpha-突触核蛋白与完整线粒体相互作用的NMR研究[J]. 波谱学杂志, 2021, 38(2): 164-172. |
[12] | 廖怀玉, 韩红园, 陈飞, 张海艳, 杨静, 赵天增. 苦皮藤中两个新的 β-二氢沉香呋喃型化合物的 NMR 数据解析[J]. 波谱学杂志, 2021, 38(1): 101-109. |
[13] | 李玉江, 赵伟, 郭晓河, 陶乐, 张祥, 张海艳, 赵天增. 盐酸马尼地平的核磁共振数据解析[J]. 波谱学杂志, 2021, 38(1): 110-117. |
[14] | 王睿迪, 徐贝贝, 宋艳红, 王雪璐, 姚叶锋. 原位核磁共振技术研究光催化甲醇重整过程中甲醇与水的相互作用[J]. 波谱学杂志, 2021, 38(1): 43-57. |
[15] | 柯汉平, 蔡宏浩. 基于哈德曼编码的新型高分辨定域谱[J]. 波谱学杂志, 2020, 37(4): 524-532. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||