[1] |
TANG C, IWAHARA J, CLORE G M. Visualization of transient encounter complexes in protein-protein association[J]. Nature, 2006, 444(7117): 383-386.
doi: 10.1038/nature05201
|
[2] |
IWAHARA J, CLORE G M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR[J]. Nature, 2006, 440(7088): 1227-1230.
doi: 10.1038/nature04673
|
[3] |
XING Q, HUANG P, YANG J, et al. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling[J]. Angew Chem Int Ed Engl, 2014, 53(43): 11501-11505.
doi: 10.1002/anie.201405976
|
[4] |
GABDOULLINE R R, WADE R C. Biomolecular diffusional association[J]. Curr Opin Struct Biol, 2002, 12(2): 204-213.
doi: 10.1016/S0959-440X(02)00311-1
|
[5] |
SCHREIBER G, HARAN G, ZHOU H X. Fundamental aspects of protein-protein association kinetics[J]. Chem Rev, 2009, 109(3): 839-860.
doi: 10.1021/cr800373w
pmid: 19196002
|
[6] |
UBBINK M. The courtship of proteins: understanding the encounter complex[J]. FEBS Lett, 2009, 583(7): 1060-1066.
doi: 10.1016/j.febslet.2009.02.046
pmid: 19275897
|
[7] |
VAN SON M, SCHILDER J T, DI SAVINO A, et al. The transient complex of cytochrome c and cytochrome c peroxidase: Insights into the encounter complex from multifrequency EPR and NMR spectroscopy[J]. Chemphyschem, 2020, 21(10): 1060-1069.
doi: 10.1002/cphc.201901160
pmid: 32301564
|
[8] |
NORTHRUP S H, BOLES J O, REYNOLDS J C. Brownian dynamics of cytochrome c and cytochrome c peroxidase association[J]. Science, 1988, 241(4861): 67-70.
pmid: 2838904
|
[9] |
SCHREIBER G, FERSHT AR. Rapid, electrostatically assisted association of proteins[J]. Nat Struct Biol, 1996, 3(5): 427-431.
pmid: 8612072
|
[10] |
VIJAYAKUMAR M, WONG KY, SCHREIBER G, et al. Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on barnase and barstar[J]. J Mol Biol, 1998, 278(5): 1015-1024.
pmid: 9600858
|
[11] |
SELZER T, ALBECK S, SCHREIBER G. Rational design of faster associating and tighter binding protein complexes[J]. Nat Struct Biol, 2000, 7(7): 537-541.
pmid: 10876236
|
[12] |
ZHOU H X, SZABO A. Enhancement of association rates by nonspecific binding to DNA and cell membranes[J]. Phys Rev Lett, 2004, 93(17): 178101.
doi: 10.1103/PhysRevLett.93.178101
|
[13] |
HAREL M, COHEN M, SCHREIBER G. On the dynamic nature of the transition state for protein-protein association as determined by double-mutant cycle analysis and simulation[J]. J Mol Biol, 2007, 371(1): 180-196.
pmid: 17561113
|
[14] |
GENET J P. Asymmetric catalytic hydrogenation. Design of new Ru catalysts and chiral ligands: from laboratory to industrial applications[J]. Acc Chem Res, 2003, 36(12): 908-918.
doi: 10.1021/ar020152u
|
[15] |
WORRALL J A, LIU Y, CROWLEY P B, et al. Myoglobin and cytochrome b5: a nuclear magnetic resonance study of a highly dynamic protein complex[J]. Biochemistry, 2002, 41(39): 11721-11730.
pmid: 12269814
|
[16] |
UBBINK M, BENDALL D S. Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis[J]. Biochemistry, 1997, 36(21): 6326-6335.
pmid: 9174347
|
[17] |
WORRALL J A, REINLE W, BERNHARDT R, et al. Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin[J]. Biochemistry, 2003, 42(23): 7068-7076.
pmid: 12795602
|
[18] |
BASHIR Q, SCANU S, UBBINK M. Dynamics in electron transfer protein complexes[J]. FEBS J, 2011, 278(9): 1391-1400.
doi: 10.1111/j.1742-4658.2011.08062.x
pmid: 21352493
|
[19] |
HU Y F, LI C G, HE L C, et al. Mechanisms of chaperones as active assistant/protector for proteins: Insights from NMR studies[J]. Chinese J Chem, 2019, 38(4): 406-413.
doi: 10.1002/cjoc.v38.4
|
[20] |
TOLMAN J R, FLANAGAN J M, KENNEDY M A, et al. NMR evidence for slow collective motions in cyanometmyoglobin[J]. Nat Struct Biol, 1997, 4(4): 292-297.
pmid: 9095197
|
[21] |
WANG J N, LIN Y L, ZHU Q J, et al. NMR assignments and characterization of the DNA-binding domain of Arabidopsis transcription factor WRKY11[J]. Magn Reson Lett, 2021, 1(2): 112-120.
|
[22] |
BRUCE N J, GANOTRA G K, KOKH D B, et al. New approaches for computing ligand-receptor binding kinetics[J]. Curr Opin Struct Biol, 2018, 49: 1-10.
doi: 10.1016/j.sbi.2017.10.001
|
[23] |
DICKSON A, TIWARY P, VASHISTH H. Kinetics of ligand binding through advanced computational approaches: A review[J]. Curr Top Med Chem, 2017, 17(23): 2626-2641.
doi: 10.2174/1568026617666170414142908
pmid: 28413946
|
[24] |
DE VIVO M, MASETTI M, BOTTEGONI G, et al. Role of molecular dynamics and related methods in drug discovery[J]. J Med Chem, 2016, 59(9): 4035-4061.
doi: 10.1021/acs.jmedchem.5b01684
pmid: 26807648
|
[25] |
BERNETTI M, CAVALLI A, MOLLICA L. Protein-ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling[J]. Medchemcomm, 2017, 8(3): 534-550.
doi: 10.1039/c6md00581k
pmid: 30108770
|
[26] |
SHAN Y, KIM E T, EASTWOOD M P, et al. How does a drug molecule find its target binding site?[J]. J Am Chem Soc, 2011, 133(24): 9181-9183.
doi: 10.1021/ja202726y
pmid: 21545110
|
[27] |
DROR R O, PAN A C, ARLOW D H, et al. Pathway and mechanism of drug binding to G-protein-coupled receptors[J]. Proc Natl Acad Sci U S A, 2011, 108(32): 13118-13123.
doi: 10.1073/pnas.1104614108
|
[28] |
TRAN D P, KITAO A. Dissociation process of a MDM2/p53 complex investigated by parallel cascade selection molecular dynamics and the markov state model[J]. J Phys Chem B, 2019, 123(11): 2469-2478.
doi: 10.1021/acs.jpcb.8b10309
|
[29] |
DICKSON A. Mapping the ligand binding landscape[J]. Biophys J, 2018, 115(9): 1707-1719.
doi: S0006-3495(18)31102-0
pmid: 30327139
|
[30] |
PLATTNER N, NOÉ F. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models[J]. Nat Commun, 2015, 6: 7653.
doi: 10.1038/ncomms8653
pmid: 26134632
|
[31] |
SILVA D A, BOWMAN G R, SOSA-PEINADO A, et al. A role for both conformational selection and induced fit in ligand binding by the LAO protein[J]. PLoS Comput Biol, 2011, 7(5): e1002054.
doi: 10.1371/journal.pcbi.1002054
|
[32] |
REIZER J, SAIER JR M H, DEUTSCHER J, et al. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation[J]. Crit Rev Microbiol, 1988, 15(4): 297-338.
pmid: 3060316
|
[33] |
HERZBERG O, KLEVIT R. Unraveling a bacterial hexose transport pathway[J]. Curr Opin Struct Biol, 1994, 4(6): 814-822.
doi: 10.1016/0959-440X(94)90262-3
|
[34] |
WANG G, LOUIS J M, SONDEJ M, et al. Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system[J]. EMBO J, 2000, 19(21): 5635-5649.
doi: 10.1093/emboj/19.21.5635
|
[35] |
GONG Z, DING Y H, DONG X, et al. Visualizing the ensemble structures of protein complexes using chemical cross-linking coupled with mass spectrometry[J]. Biophys Rep, 2015, 1: 127-138.
doi: 10.1007/s41048-015-0015-y
|
[36] |
FAWZI N L, DOUCLEFF M, SUH J Y, et al. Mechanistic details of a protein-protein association pathway revealed by paramagnetic relaxation enhancement titration measurements[J]. Proc Natl Acad Sci U S A, 2010, 107(4): 1379-1384.
doi: 10.1073/pnas.0909370107
|
[37] |
DING Y H, GONG Z, DONG X, et al. Modeling protein excited-state structures from “over-length” chemical cross-links[J]. J Biol Chem, 2017, 292(4): 1187-1196.
doi: 10.1074/jbc.M116.761841
|
[38] |
WANG G, LOUIS J M, SONDEJ M, et al. Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system[J]. EMBO J, 2000, 19(21): 5635-5649.
pmid: 11060015
|
[39] |
AN Y, CHEN L, SUN S, et al. QuikChange shuffling: a convenient and robust method for site-directed mutagenesis and random recombination of homologous genes[J]. N Biotechnol, 2011, 28(4): 320-325.
doi: 10.1016/j.nbt.2011.03.001
|
[40] |
SCHWIETERS C D, KUSZEWSKI J J, TJANDRA N, et al. The Xplor-NIH NMR molecular structure determination package[J]. J Magn Reson, 2003, 160(1): 65-73.
pmid: 12565051
|
[41] |
CHEN R, LI L, WENG Z. ZDOCK: an initial-stage protein-docking algorithm[J]. Proteins, 2003, 52(1): 80-87.
doi: 10.1002/(ISSN)1097-0134
|
[42] |
IWAHARA J, SCHWIETERS C D, CLORE G M. Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule[J]. J Am Chem Soc, 2004, 126(18): 5879-5896.
pmid: 15125681
|