Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 839-854.doi: 10.1007/s10473-023-0219-z
Previous Articles Next Articles
Zhankuan Zeng, Yanping CHEN†
Received:
2021-10-22
Revised:
2022-02-17
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Yanping CHEN, E-mail: About author:
Zhankuan Zeng, E-mail: broadenzeng@gmail.com
Supported by:
Zhankuan Zeng, Yanping CHEN. A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS*[J].Acta mathematica scientia,Series B, 2023, 43(2): 839-854.
[1] Alikhanov A.A new difference scheme for the time fractional diffusion equation. J Comput Phys, 2015, 280: 424-438 [2] Baillie R.Long memory processes and fractional integration in econometrics. J Econom, 1996, 73(1): 5-59 [3] Baleanu D, Diethelm K, Scalas E, et al.Fractional Calculus: Models and Numerical Methods. Singapore: World Scientific, 2012 [4] Berkowitz B, Klafter J, Metzler R, et al.Physical pictures of transport in heterogeneous media: Advectiondispersion, random-walk, and fractional derivative formulations. Water Resour Res, 2002, 38(10): 1191 [5] Bronstein I, Israel Y, Kepten E, et al.Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett, 2009, 103(1): 018102 [6] Castillo P, Kanschat B, Schotzau D, et al.Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math Comput, 2002, 71(238): 455-478 [7] Cockburn B, Shu C W.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework. Math Comput, 1989, 52(186): 411-435 [8] Cockburn B, Shu C W.The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35(6): 2440-2463 [9] Cockburn B, Kanschat G, Ilaria P, et al.Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J Numer Anal, 2001, 39(1): 264-285 [10] Dai H,Wei L, Zhang X.Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation. Numer Algorithms, 2014, 67(4): 845-862 [11] Deng W.Finite element method for the space and time fractional fokker-planck equation. SIAM J Numer Anal, 2008, 47(1): 204-226 [12] Du Y, Liu Y, Li H, et al.Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J Comput Phys, 2017, 344: 108-126 [13] Glöckle W, Nonnenmacher T.A fractional calculus approach to self-similar protein dynamics. Biophys J, 1995, 681(1): 46-53 [14] Hesthaven J S, Xu Q.Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J Numer Anal, 2014, 52(1): 405-423 [15] Hilfer R.Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000 [16] Ichise M, Nagayanagi Y, Kojima T.An analog simulation of non-integer order transfer functions for analysis of electrode processes. J Electroanal Chem, 1971, 33(2): 253-265 [17] Jin B, Lazarov R, Zhou Z.Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J Numer Anal, 2013, 51(1): 445-466 [18] Kilbas A, Srivastava H, Trujillo J.Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006 [19] Li C, Wang Z.The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis. Appl Numer Math, 2019, 140: 1-22 [20] Li X, Xu C.A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal, 2009, 47(3): 2108-2131 [21] Lin Y, Xu C.Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225(2): 1533-1552 [22] Liu C, Shen J.A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method. Physica D, 2003, 179(3/4): 211-228 [23] Lv C, Xu C.Error analysis of a high order method for time-fractional diffusion equations. SIAM J Sci Comput, 2016, 38(5): A2699-A2724 [24] Meerschaert M, Tadjeran C.Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math, 2004, 172(1): 65-77 [25] Meerschaert M, Tadjeran C.Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math, 2006, 56(1): 80-90 [26] Metzler R, Klafter J.The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 2000, 339(1): 1-77 [27] Mustapha K, McLean W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer Algorithms, 2011, 56(2): 159-184 [28] Mustapha K, McLean W. Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J Numer Anal, 2012, 32(3): 906-925 [29] Podlubny I.Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math Sci Engin, 2013, (3): 553-563 [30] Schroeder J, Hagiwara S.Cytosolic calcium regulates ion channels in the plasma membrane of vicia faba guard cells. Nature, 1989, 338(6214): 427-430 [31] Sun Z, Gao G, Zhang H.A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J Comput Phys, 2014, 259: 33-50 [32] Yuan W, Huang Y, Chen Y.A local discontinuous Galerkin method for time-fractional Burgers equations. East Asian J Appl Math, 2020, 10(4): 818-837 [33] Wang Y, Ren L.A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl Math Comput, 2019, 342: 71-93 [34] Wei L, He Y.Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourthorder problems. Appl Math Model, 2014, 38(4): 1511-1522 [35] Zhang Y, Sun Z, Liao H.Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys, 2014, 265: 195-210 |
[1] | Ran Wang, Beibei Zhang. A LARGE DEVIATION PRINCIPLE FOR THE STOCHASTIC GENERALIZED GINZBURG-LANDAU EQUATION DRIVEN BY JUMP NOISE* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 505-530. |
[2] | Minghua Yang, Jinyi Sun, Zunwei Fu, Zheng Wang. THE SINGULAR CONVERGENCE OF A CHEMOTAXIS-FLUID SYSTEM MODELING CORAL FERTILIZATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 492-504. |
[3] | Zhendong Fang, Ning Jiang. CONVERGENCE FROM THE TWO-SPECIES VLASOV-POISSON-BOLTZMANN SYSTEM TO THE TWO-FLUID INCOMPRESSIBLE NAVIER-STOKES-FOURIER-POISSON SYSTEM WITH OHM'S LAW* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 777-820. |
[4] | Jinbao Jian, Chen Zhang, Pengjie Liu. A SUPERLINEARLY CONVERGENT SPLITTING FEASIBLE SEQUENTIAL QUADRATIC OPTIMIZATION METHOD FOR TWO-BLOCK LARGE-SCALE SMOOTH OPTIMIZATION* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 1-24. |
[5] | Duong Viet Thong, Vu Tien Dung. A RELAXED INERTIAL FACTOR OF THE MODIFIED SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDO MONOTONE VARIATIONAL INEQUALITIES IN HILBERT SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 184-204. |
[6] | Bo Han, Manseob Lee. A GENERALIZED LIPSCHITZ SHADOWING PROPERTY FOR FLOWS* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 259-288. |
[7] | Shifeng GENG, Feimin HUANG, Xiaochun WU. L2-CONVERGENCE TO NONLINEAR DIFFUSION WAVES FOR EULER EQUATIONS WITH TIME-DEPENDENT DAMPING [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2505-2522. |
[8] | Thieu Huy NGUYEN, Truong Xuan PHAM, Thi Ngoc Ha VU, The Sac LE. EXISTENCE AND STABILITY OF PERIODIC AND ALMOST PERIODIC SOLUTIONS TO THE BOUSSINESQ SYSTEM IN UNBOUNDED DOMAINS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1875-1901. |
[9] | Yicheng LIU. EXPONENTIAL STABILITY OF A MULTI-PARTICLE SYSTEM WITH LOCAL INTERACTION AND DISTRIBUTED DELAY [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2165-2187. |
[10] | Ravinder Kumar SHARMA, Sumit CHANDOK. THE GENERALIZED HYPERSTABILITY OF GENERAL LINEAR EQUATION IN QUASI-2-BANACH SPACE [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1357-1372. |
[11] | Sijie LIU, Wancheng SHENG. THE STABILITY OF THE DELTA WAVE TO PRESSURELESS EULER EQUATIONS WITH VISCOUS AND FLUX PERTURBATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1519-1535. |
[12] | Yongfu YANG, Qiangchang JU, Shuang ZHOU. THE GLOBAL COMBINED QUASI-NEUTRAL AND ZERO-ELECTRON-MASS LIMIT OF NON-ISENTROPIC EULER-POISSON SYSTEMS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1666-1680. |
[13] | Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW [J]. Acta mathematica scientia,Series B, 2022, 42(3): 887-902. |
[14] | Yingqiu LI, Xulan HUANG, Zhaohui PENG. CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT [J]. Acta mathematica scientia,Series B, 2022, 42(3): 957-974. |
[15] | Xulong QIN, Hua QIU, Zheng-an YAO. GLOBAL STABILITY OF LARGE SOLUTIONS TO THE 3D MAGNETIC BÉNARD PROBLEM [J]. Acta mathematica scientia,Series B, 2022, 42(2): 588-610. |
|