[1] Abdollahpour M R, Rassias Th M. Hyers-Ulam stability of hypergeometric differential equations. Aequationes mathematicae, 2019, 93:691-698 [2] Aiemsomboon L, Sintunavarat W. A note on the generalised hyperstability of the general linear equation. Bulletin of the Australian Mathematical Society, 2017, 96(2):263-273 [3] Aoki T. On the stability of the linear transformation in Banach spaces. Journal of the Mathematical Society of Japan, 1950, 2(1/2):64-66 [4] Bahyrycz A, Piszczek M. Hyperstability of the Jensen functional equation. Acta Mathematica Hungarica, 2014, 142(2):353-365 [5] Bourgin D. Approximately isometric and multiplicative transformations on continuous function rings. Duke Mathematical Journal, 1949, 16(2):385-397 [6] Brzdȩk J, El-hady E -S. On approximately additive mappings in 2-Banach spaces. Bulletin of the Australian Mathematical Society, 2020, 101(2):299-310 [7] Brzdȩk J, El-hady E -S. On hyperstability of the cauchy functional equation in n-Banach spaces. Mathematics, 20208:1-12 [8] Brzdȩk J, Ciepliński K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Mathematica Scientia, 2018, 38(2):377-390 [9] Brzdȩk J. Stability of additivity and fixed point methods. Fixed Point Theory Applications, 2013, 2013(285):1-9 [10] Brzdȩk J. Remarks on hyperstability of the Cauchy functional equation. Aequationes Mathematicae, 2013, 86(3):255-267 [11] Brzdȩk J, Ciepliński K. Hyperstability and Superstability. Abstract and Applied Analysis, 2013, 2013:1-13 [12] Brzdȩk J. A hyperstability result for the Cauchy equation. Bulletin of the Australian Mathematical Society, 2014, 89(1):33-40 [13] Brzdȩk J. Remarks on stability of some inhomogeneous functional equations. Aequationes Mathematicae, 2015, 89(1):83-96 [14] Găvruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. Journal of Mathematical Analysis and Applications, 1994, 184(3):431-436 [15] Gselmann E. Hyperstability of a functional equation. Acta Mathematica Hungarica, 2009, 124(1/2):179-188 [16] Gähler S. Lineare 2-normierte räume. Mathematische Nachrichten, 1964, 28:1-43 [17] Hyers D H. On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America, 1941, 27(4):222-224 [18] Kikina K, Luljeta G, Hila K. Quasi-2-normed spaces and some fixed point theorems. Applied Mathematics & Information Sciences, 2016, 10(2):469-474 [19] Lee Y H, Jung S M, Rassias Th M. Uniqueness theorems on functional inequalities concerning cubicquadratic-additive equation. Journal of Mathematical Inequalities, 2018, 12:43-61 [20] Maksa G, Páles Z. Hyperstability of a class of linear functional equations. Acta Mathematica Academiae Paedagogicae Nyıregyháziensis, 2001, 17:107-112 [21] Park C. Generalized quasi-Banach spaces and quasi-(2, p)-normed spaces. Journal of the Chungcheong Mathematical Society, 2006, 19(2):197-206 [22] Park C, Rassias Th M. Additive functional equations and partial multipliers in C*-algebra. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113:2261-2275. https://doi.org/10.1007/s13398-018-0612-y [23] Phochai T, Saejung S. Hyperstability of generalised linear functional equations in several variables. Bulletin of the Australian Mathematical Society, 2020, 102(2):293-302 [24] Piszczek M. Remark on hyperstability of the general linear equation. Aequationes Mathematicae, 2014, 88(1/2):163-168 [25] Piszczek M. Hyperstability of the general linear functional equation. Bulletin of the Korean Mathematical Society, 2015, 52(6):1827-1838 [26] Rassias Th M. On the stability of the linear mapping in Banach spaces. Proceedings of the American Mathematical Society, 1978, 72(2):297-300 [27] Ulam S M. Problem in modern mathematics. Courier Corporation, 2004 [28] Wang C, Xu T Z. Hyers-Ulam stability of differential operators on reproducing kernel function spaces. Complex Analysis and Operator Theory, 2016, 10(4):795-813 [29] Xu T Z. On the stability of multi-Jensen mappings in β-normed spaces. Applied Mathematics Letters, 2012, 25(11):1866-1870 [30] Xu T Z, Rassias J M, Xu W X. Generalized Hyers-Ulam stability of a general mixed additive-cubic functional equation in quasi-Banach spaces. Acta Mathematica Sinica, English Series, 2012, 28(3):529-560 |