Acta mathematica scientia,Series B ›› 2019, Vol. 39 ›› Issue (1): 57-82.doi: 10.1007/s10473-019-0106-9
• Articles • Previous Articles Next Articles
Ting ZHANG, Wancheng SHENG
Received:
2017-11-30
Revised:
2018-05-18
Online:
2019-02-25
Published:
2019-03-13
Contact:
Wancheng SHENG
E-mail:mathwcsheng@shu.edu.cn
Supported by:
Ting ZHANG, Wancheng SHENG. GLOBAL SOLUTIONS OF THE PERTURBED RIEMANN PROBLEM FOR THE CHROMATOGRAPHY EQUATIONS[J].Acta mathematica scientia,Series B, 2019, 39(1): 57-82.
[1] Rhee H K, Aris R, Amundson N R. First-Order Partial Differential Equations, Vol 1:Theory and Application of Single Equations. New York:Dover Publications, 2001 [2] Rhee H K, Aris R, Amundson N R. First-Order Partial Differential Equations, Vol 2:Theory and Application of Hyperbolic Systems of Quasilinear Equations. New York:Dover Publications, 2001 [3] Aris R, Amundson N. Mathematical Methods in Chemical Engineering, Vol 2. Prentice-Hall, Englewood Cliffs, NJ, 1966 [4] Rhee H K, Aris R, Amundson N R. On the theory of multicomponent chromatography. Philos Trans R Soc London, 1970, A267:419-455 [5] Helfferich F, Klein G. Multicomponent Chromatography. New York:Marcel Dekker, 1970 [6] Temple B. Systems of conservation laws with invariant submanifolds. Trans Amer Math Soc, 1983, 280:781-795 [7] Ostrov D N. Asymptotic behavior of two interacting chemicals in a chromatography reactor. SIAM J Math Anal, 1996, 27:1559-1596 [8] Mazzotti M. Local equilibrium theory for the binary chromatography of species subject to a generalized Langmuir isotherm. Ind Eng Chem Res, 2006, 45:5332-5350 [9] Mazzotti M. Non-classical composition fronts in nonlinear chromatography:delta-shock. Ind Eng Chem Res, 2009, 48:7733-7752 [10] Mazzotti M, Tarafder A, Cornel J, Gritti F, Guiochon G. Experimental evidence of a delta-shock in nonlinear chromatography. J Chromatogr A, 2010, 1217(13):2002-2012 [11] Shen C. Wave interactions and stability of the Riemann solutions for the chromatography equations. J Math Anal Appl, 2010, 365:609-618 [12] Ambrosio L, Crippa G, Fifalli A, Spinolo L A. Some new well-posedness results for continuity and transport equations and applications to the chromatography system. SIAM J Math Anal, 2009, 41:1090-1920 [13] Sun M. Delta shock waves for the chromatography equations as self-similar viscosity limits. Q Appl Math, 2011, 69:425-443 [14] Bressan A, Shen W. Uniqueness if discintinuous ODE and conservation laws. Nonlinear Anal, 1998, 34:637-652 [15] Tsikkou C. Singular shocks in a chromatography model. J Math Anal Appl, 2016, 439:766-797 [16] Keyfitz B L, Kranzer H C. A viscosity approximation to a system of conservation laws with no classical Riemann solution//Nonlinear Hyperbolic Problems, Bordeaux 1988. Lecture Notes in Math, Vol 1402. Berlin:Springer, 1989:185-197 [17] Keyfitz B L, Kranzer H C. Spaces of weighted measures for conservation laws with singular shock solutions. J Differential Equations, 1995, 118(2):420-451 [18] Kranzer H C, Keyfitz B L. A strictly hyperbolic system of conservation laws admitting singular shocks//Nonlinear Evolution Equations that Change Type. IMA Vol Math Appl, Vol 27. New York:Springer, 1990:107-125 [19] Wang L, Bertozzi A L. Shock solutions for high concentration particle-laden thin films. SIAM J Appl Math, 2014, 74(2):322-344 [20] Mavromoustaki A, Bertozzi A L. Hyperbolic systems of conservation laws in gravity-driven, particles-laden thin-film flows. J Engrg Math, 2014, 88:29-48 [21] Kalisch H, Mitrovic D. Singular solutions of a fully nonlinear 2×2 system of conservation laws. Proc Edinb Math Soc, 2012, 55(3):711-729 [22] Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math, 1997, 57(3):683-730 [23] Nedeljkov M. Singular shock waves in interactions. Quarterly of Applied Mathematics, 2006, 66(2):112-118 [24] Canon E. On some hyperbolic systems of temple class. Nonlinear Anal TMA, 2012, 75:4241-4250 [25] Ancona F, Goatin P. Uniqueness and stability of L∞ solutions for Temple class systems with boundary and properties of the attenaible sets. SIAM J Math Anal, 2002, 34:28-63 [26] Barti P, Bressan A. The semigroup generated by a Temple class system with large data. Differential Integral Equations, 1997, 10:401-418 [27] Bianchini S. Stability of L∞ solutions for hyperbolic systems with coinciding shocks and rarefactions. SIAM J Math Anal, 2001, 33:959-981 [28] Bressan A, Goatin P. Stability of L∞ solutions of temple class systems. Differential Integral Equations. 2000, 13:1503-1528 [29] Liu T P, Yang T. L1 stability of conservation laws with coinciding Hugoniot and characteristic curves. Indiana Univ Math J, 1999, 48:237-247 [30] Li T T. Global Classical Solutions for Quasilinear Hyperbolic Systems. New York:John Wiley and Sons, 1994 [31] Shen C, Sun M. Interactions of delta shock waves for the transport equations with split delta functions. J Math Anal Appl, 2009, 351:747-755 [32] Guo L, Zhang Y, Yin G. Interactions of delta shock waves for the Chaplygin gas equations with split delta functions. J Math Anal Appl, 2014, 410:190-201 [33] Qu A, Wang Z. Stability of the Riemann solutions for a Chaplygin gas. J Math Anal Appl, 2014, 409:347-361 [34] Wang Z, Zhang Q. The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations. Acta Math Sci, 2012, 32B(3):825-841 [35] Sun M. Interactions of elementary waves for Aw-Rascle model. SIAM J Appl Math, 2009, 69:1542-1558 [36] Guo L, Pan L, Yin G. The perturbed Riemann problem and delta contact discontinuity in chromatography equations. Nonlinear Analysis, TMA, 2014, 106:110-123 [37] Shen C. Wave interactions and stability of the Riemann solutions for the chromatography equations. J Math Anal Appl, 2010, 365:609-618 [38] Shen C. The asymptotic behaviors of solutions to the perturbed Riemann problem near the singular curve for the chromatography system. J Nonlin Math Phys, 2015, 22:76-101 [39] Sun M. Interactions of delta shock waves for the chromatography equations. Appl Math Lett, 2013, 26:631-637 [40] Sun M, Sheng W. The ignition problem for a scalar nonconvex combustion model. J Differential Equations, 2006, 231:673-692 [41] Chang T, Hsiao L. The Riemann problem and interaction of waves in gas dynamics//Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol 41. Longman Scientific and Technical, 1989 [42] Dafermos C M. Hyperbolic Conversation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenchaften. Berlin, Heidelberg, New York:Springer, 2000 [43] Serre D. Systems of Conversation Laws 1/2. Cambridge:Cambridge University Press, 1999/2000 [44] Sekhar T R, Sharma V D. Riemann problem and elementary wave interactions in isentropic magnetogasdynamics. Nonlinear Analysis:Real World Applications, 2010, 11:619-636 [45] Dafermos C. Generalized characteristics in hyperbolic systems of conservation laws. Arch Rational Mech Anal, 1989, 107:127-155 [46] Smoller J. Shock Waves and Reaction-Diffusion Equations. New York:Springer, 1994 [47] Bressan A. Hyperbolic Systems of Conservation Laws:The One-Dimensional Cauchy Problem. Oxford Lecture Ser Math Appl, Vol 20. Oxford:Oxford University Press, 2000 [48] Shen C, Sheng W, Sun M. The asymptotic limits of Riemann solutions to the scaled Leroux system. Commun Pure Appl Anal, 2017, 17(2):391-411 |
[1] | Zejun WANG, Qi ZHANG. FINITE TIME EMERGENCE OF A SHOCK WAVE FOR SCALAR CONSERVATION LAWS VIA [J]. Acta mathematica scientia,Series B, 2019, 39(1): 83-93. |
[2] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[3] | TANG PingFan, FANG BeiXiang, WANG YAGuang. ON LOCAL STRUCTURAL STABILITY OF ONE-DIMENSIONAL SHOCKS IN RADIATION HYDRODYNAMICS [J]. Acta mathematica scientia,Series B, 2015, 35(1): 1-44. |
[4] | CHEN Gui-Qang, XIAO Chang-Guo, ZHANG Yong-Qian. EXISTENCE OF ENTROPY SOLUTIONS TO TWO-DIMENSIONAL STEADY EXOTHERMICALLY REACTING EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(1): 1-38. |
[5] | WANG Zhen, ZHANG Qing-Ling. THE RIEMANN PROBLEM WITH DELTA INITIAL DATA FOR THE ONE-DIMENSIONAL CHAPLYGIN GAS EQUATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 825-841. |
[6] | Rinaldo M. Colombo, Magali L′ecureux-Mercier. NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 177-196. |
[7] | Liu Xiaomin, Wang Zhen. THE RIEMANN PROBLEM FOR THE NONLINEAR DEGENERATE WAVE EQUATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(6): 2313-2322. |
[8] | SUN Mei-Na. A NOTE ON THE INTERACTIONS OF ELEMENTARY WAVES FOR THE AR TRAFFIC FLOW MODEL WITHOUT VACUUM [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1503-1512. |
[9] | Gui-Qiang G. Chen, Weihua Ruan. A HYPERBOLIC SYSTEM OF CONSERVATION LAWS FOR FLUID FLOWS THROUGH COMPLIANT XISYMMETRIC VESSELS [J]. Acta mathematica scientia,Series B, 2010, 30(2): 391-427. |
[10] | Zhiliang Xu, Guang Lin. SPECTRAL/HP ELEMENT METHOD WITH HIERARCHICAL RECONSTRUCTION FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS [J]. Acta mathematica scientia,Series B, 2009, 29(6): 1737-1748. |
[11] | WANG Dong-Hong, ZHAO Ning, HU Oou, LIU Jian-Ming. A GHOST FLUID BASED FRONT TRACKING METHOD FOR MULTIMEDIUM COMPRESSIBLE FLOWS [J]. Acta mathematica scientia,Series B, 2009, 29(6): 1629-1646. |
[12] | LI Jie-Quan, CHENG Mo-Cheng, ZHANG Tong, ZHENG Yu-Xi. TWO-DIMENSIONAL RIEMANN PROBLEMS: FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2009, 29(4): 777-802. |
[13] | YANG Xiao-Zhou. Multi-dimensional Riemann problem of scalar conservation law [J]. Acta mathematica scientia,Series B, 1999, 19(2): 190-200. |
[14] | Zhu Changjiang, Xu Xuewen. A NOTE ON THE RIEMANN PROBLEM TO HYPERBOLIC CONSERVATION LAWS [J]. Acta mathematica scientia,Series B, 1998, 18(S1): 1-4. |
[15] | Hu Jiaxin. THE RIEMANN PROBLEM FOR A TWO-DIMENSIONAL HYPERBOLIC SYSTEM OF CONSERVATION LAWS WITH NON-CLASSICAL SHOCK WAVES [J]. Acta mathematica scientia,Series B, 1998, 18(1): 45-56. |
|