[1] Baumann C E, Oden T J. A discontinuous hp finite element method for the Euler and the Navier-Stokes equations. Int J Numer Methods Fluids, 1999, 31: 79--95
[2] Biswas R, Devine K, Flaherty J. Parallel, adaptive finite element methods for conservation laws. Appl Numer Math, 1994, 14: 255--283
[3] Barth T, Frederickson P. High order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA Paper, No 90-0013, 1990
[4] Cai W, Gottlieb D, Shu C -W. Non-oscillatory spectral Fourier methods for shock wave calculations. Math Comput, 1989, 52: 389--410
[5] Cockburn B, Shu C -W. The TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws V: multidimensional systems. J Comput Phys, 1998, 141: 199--224
[6] Cockburn B, Lin S -Y, Shu C -W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J Comput Phys, 1989, 84: 90--113
[7] Cockburn B, Shu C -W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comp, 1989, 52: 411--435
[8] Giannakouros J, Karniadakis G E. A spectral element-FCT method for the compressible Euler equations. J Comput Phys, 1994, 115: 65--85
[9] Harten A. High resolution scheme for hyperbolic conservation laws. J Comput Phys, 1983, 49: 357--393
[10] Harten A, Engquist B, Osher S, Chakravarthy S. Uniformly high order accurate essentially non-oscillatory schemes, III. J Comput Phys, 1987, 71: 231--303
[11] Hesthaven J S, Gottlieb D. A stable penalty method for the compressible Navier-Stokes equations. I. Open boundary conditions. SIAM J Sci Comput, 1996, 17(3): 579--612
[12] Hesthaven J S. A stable penalty method for the compressible Navier-Stokes equations. II. One dimensional domain decomposition schemes. SIAM J Sci Comput, 1997, 18(2): 658--685
[13] Hesthaven J S. A stable penalty method for the compressible NavierStokes equations. III. Multi-dimensional domain decomposition schemes. SIAM J Sci Comput, 1999, 20(1): 62--93
[14] Houston P, Schwab C, Suli E. Stabilized hp-finite element methods for first-order hyperbolic problems. SIAM J Numer Anal, 2000, 37(5): 1618--1643
[15] Hu C -Q, Shu C -W. Weighted essentially non-oscillatory schemes on triangular meshes. J Comput Phys, 1999, 150: 97--127
[16] Jiang G -S, Shu C -W. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202--228
[17] Karniadakis G E, Bullister E T, Patera A T. A spectral element method for solution of two- and three dimensional time dependent Navier-Stokes equations//Finite Element Methods for Nonlinear Problems. New York/Berlin: Springer-Verlag, 1985: 803
[18] Kopriva D A, Kolias J H. A conservative staggered-grid Chebyshev multidomain method for compressible flows. J Comput Phys, 1996, 125: 244--261
[19] Kreiss H O, Olinger J. Methods for the approximate solution of time-dependent problems. GARP Publ Ser, Vol 10. GARP, Geneva, 1973
[20] Lax P. Weak solutions of nonlinear hyperbolic equations and their numerical computations. Comm Pure Appl Math, 1954, 7: 159--193
[21] Lin G, Karniadakis G E. A discontinuous Galerkin method for two-temperature plasmas. Comput Meth Appl Mech, 2006, 195(25--28): 3504--3527
[22] Liu X -D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J Comput Phys, 1994, 115: 200--212
[23] Liu Y -J. Central schemes on overlapping cells. J Comput Phys, 2005, 209: 82--104
[24] Liu Y -J, Shu C -W, Tadmor E, Zhang M -P. Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J Numer Anal, 2007, 45: 2442--2467
[25] Liu Y -J, Shu C -W, Tadmor E, Zhang M -P. Non-oscillatory hierarchical reconstruction for central and finite volume schemes. Comm Comput Phys, 2007, 2: 933--963
[26] Liu Y -J, Shu C -W, Xu Z -L. Hierarchical reconstruction with up to second degree remainder for solving nonlinear conservation law.
Nonlinearity, 2009, in press
[27] Lomtev I, Quillen C B, Karniadakis G E. Spectral/hp methods for viscous compressible flows on unstructured 2d meshes. J Comput Phys, 1998, 144(2): 325--357
[28] Lomtev I, Karniadakis G E. A discontinuous Galerkin method for the Navier-Stokes equations. Int J Numer Methods Fluids, 1999, 29: 587--603
[29] Mavriplis D J, Venkatakrishnan V. A unified multigrid solver for the Navier-Stokes equations on mixed element meshes. AIAA-95-1666, San Diego, CA, 1995
[30] Oden T J, Babuska I, Baumann C E. A discontinuous hp finite element method for diffusion problems. J Comput Phys, 1998, 146: 491--519
[31] Patera A T. A spectral method for fluid dynamics: Laminar flow in a channel expansion. J Comput Phys, 1984, 54: 468--488
[32] Qiu J, Shu C -W. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J Sci Comput, 2005, 26: 907--929
[33] Reed W, Hill T. Triangular mesh methods for the neutron transport equation. Tech report la-ur-73-479, Los Alamos Scientific Laboratory, 1973
[34] Sherwin S J, Karniadakis G E. Tetrahedral hp finite elements: Algorithms and flow simulations. J Comput Phys, 1995, 124(1): 14--45
[35] Sherwin S J, Karniadakis G E. A triangular spectral element method; applications to the incompressible Navier-Stokes equations.
Comput Meth Appl Mech Eng, 1995, 123(1--4): 189--229
[36] Shu C -W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws//Quarteroni A, ed. Cockburn B, Johnson C, Shu C -W, Tadmor E, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics 1697. Berlin: Springer, 1998: 325--432
[37] Shu C -W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes. J Comput Phys, 1988, 77: 439--471
[38] Shu C -W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J Comput Phys, 1989, 83: 32--78
[39] Sidilkover D, Karniadakis G E. Non-oscillatory spectral element Chebyshev method for shock wave calculations. J Comput Phys, 1993, 107(1): 10--22
[40] van Leer B. Toward the ultimate conservative difference scheme: II. Monotonicity and conservation combined in a second order scheme.
J Comput Phys, 1974, 14: 361--370
[41] van Leer B. Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection. J Comput Phys, 1977, 23: 276--299
[42] van Leer B. Towards the ultimate conservative difference scheme: V. A second order sequel to Godunov's method. J Comput Phys, 1979, 32: 101--136
[43] Wang Z J, Liu Y. Spectral (finite) volume method for conservation laws on unstructured grids III: extension to one-dimensional systems. J Sci Comput, 2004, 20: 137--157
[44] Woodward P, Colella P. Numerical simulation of two-dimensional fluid flows with strong shocks. J Comput Phys, 1984, 54: 115--173
[45] Xu Z -L, Liu Y -J, Shu C -W. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO type linear reconstruction and partial neighboring cells. J Comput Phys, 2009, 228: 2194--2212
[46] Xu Z -L, Liu Y -J, Shu C -W. Hierarchical reconstruction for spectral volume method on unstructured grids. J Comput Phys, 2009, 228: 5787--5802
[47] Warburton T C, Karniadakis G E. A discontinuous Galerkin method for the viscous MHD equations. J Comput Phys, 1999, 152: 608--641
[48] Weatherill N P, Hassan O. Efficient three-dimensional Delaurnay triangularisation with automatic point creation and imposed boundary constaints. Int J Numer Methods Eng, 1994, 37: 2005 |