[1] Bilic N, Tupper G B, Viollier R. Dark matter, dark energy and the Chaplygin gas. arXiv: astro-ph/0207423
[2] Born M, Infeld L. Foundations of the new field theory. Proc Roy Soc London, 1934, 144A: 425–451
[3] Bouchut F. On zero-pressure gas dynamics//Advances in Kinetic Theory and Computing. Ser Adv Math Appl Sci 22. River Edge, NJ: World Scientific, 1994: 171–190
[4] Brenier Y. Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equa-tions. J Math Fluid Mech, 2005, 7: S326–S331
[5] Chaplygin S. On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21: 1–121
[6] Rykov E W, Yu G, Sinai Ya G. Generalized varinational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm Math Phys, 1996, 177: 349–380
[7] Gorini V, Kamenshchik A, Moschella U, Pasquier V. The Chaplygin gas as a model for dark energy. arXiv: gr-qc/0403062
[8] Guo L H, Sheng W C, Zhang T. The two-dimensional Riemann problelm for isentropic Chaplygin gas dynamic system. Comm Pure Appl Anal, 2010, 9(2): 431–458
[9] Huang F. Weak solution to pressureless type system. Comm in Partial Differential Equations, 2005, 30(3): 283–304
[10] Huang F, Wang Z. Well posedness for pressureless flow. Comm Math Phys, 2001, 222: 117–146
[11] Jackson J D. Classical Electrodynamics (Section 1.3). Second Editon. John Wiley and Sons, 1975
[12] Korchinski D J. Solutions of a Riemann problem for a system of conservation laws possessing no classical weak solution. Thsis: Adelphi University, 1977
[13] Li J, Zhang T, Yang S. The Two-dimensional Riemann Prolem in Gas Dynamics//Pitman Monogr Surv Pure Appl Math 98. Longman Scientific and Technical, 1998
[14] Serre D. Multidimensional shock interaction for a Chaplygin gas. Arch Rational Mech Anal, 2009, 191: 539–577
[15] Setare M R. Holographic Chaplygin gas model. Phys Lett B, 2007, 648: 329–332
[16] Sheng W, Zhang T. The Riemann problem for transportation equations in gas dynamics. Mem Amer Math Soc, 1999, 137(654)
[17] Smoller J. Shock Waves and Reaction-Diffusion Equation. New York: Springer-Verlag, 1994
[18] Tan D, Zhang T, Zheng Y. Delta-shock wave as limits of vanishing viscosity for hyperbolic system of conservation laws. J Differential Equations, 1994, 112: 1–32
[19] Tsien H S. Two dimensional subsonic flow of compressible fluids. J Aeron Sci, 1939, 6: 399–407
[20] Wang Z, Ding X. Uniqueness of generalized solution for the Cauchy problem of transportation equations. Acta Mathematica Scientia, 1997, 17(3): 341–352
[21] Wang Z, Huang F, Ding X. On the Cauchy problem of transportation equations. Acta Math Appl Sinica, 1997, 13(2): 113–122
[22] Wang Z, Zhang Q L. Spiral solution to the two-dimensional transport equations. Acta Mathematica Scientia, 2010, 30(6): 2110–2128
[23] Yang H. Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics. J Math Anal Appl, 2001, 260: 18–35
[24] Yang H, Sun W. The Riemann problem with delta initial data for a class of coupled hyperbolic system of conservation laws. Nonlinear Analysis: TMA, 2007, 67: 3041–3049 |