Acta mathematica scientia,Series B ›› 2019, Vol. 39 ›› Issue (1): 83-93.doi: 10.1007/s10473-019-0107-8
• Articles • Previous Articles Next Articles
Zejun WANG, Qi ZHANG
Received:
2017-11-30
Revised:
2018-08-15
Online:
2019-02-25
Published:
2019-03-13
Contact:
Zejun WANG
E-mail:wangzejun@gmail.com
Supported by:
Zejun WANG, Qi ZHANG. FINITE TIME EMERGENCE OF A SHOCK WAVE FOR SCALAR CONSERVATION LAWS VIA[J].Acta mathematica scientia,Series B, 2019, 39(1): 83-93.
[1] Lax P. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm Pure Appl Math, 1954, 7:159-193 [2] Smoller J. Shock Waves and Reaction-Diffusion Equations. New York:Springer, 1994 [3] Liu H X, Pan T. Pointwise convergence rate of vanishing viscosity approximations for scalar conservation laws with boundary. Acta Math Sci, 2009, 29B(1):111-128 [4] Chen J, Xu X W. Existence of global smooth solution for scalar conservation laws with degenerate viscosity in 2-dimensional space. Acta Math Sci, 2007, 27B(2):430-436 [5] Kruzkov N. First-order quasilinear equations in several indenedent variables. Mat Sb, 1970, 123:217-273 [6] Ladyzenskaya O. On the construction of discontinuous solutions of quasilinear hyperbolic equations as a limit of solutions of the corresponding parabolic equations when the "viscosity coefficient" tends to zero. Dokl Adad Nauk SSSR, 1956, 111:291-294(in Russian) [7] Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1965, 18:697-715 [8] Chen G, Lu Y. A study on the applications of the theory of compensated compactness. Chinese Science Bulletin, 1988, 33:641-644 [9] Oleinik O. Discontinuous solutions of nonlinear differential equations. Usp Mat Nauk (NS), 1957, 12:3-73 [10] Hopf E. The partial differential equation ut + uux=μuxx. Comm Pure Appl Math, 1950, 3:201-230 [11] Lax P. Hyperbolic systems of conservation laws Ⅱ. Comm Pure Appl Math, 1957, 10:537-566 [12] Evans L C. Partial Differential Equations. Amer Math Society, 1997 [13] Serre D. Systems of Conservaton Laws I. Cambridge University Press, 1999 [14] Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics. Berlin:Springer-Verlag, 2010 [15] Dafermos C M. Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana Math J, 1977, 26:1097-1119 [16] Dafermos C M. Large time behaviour of solutions of hyperbolic balance laws. Bull Greek Math Soc, 1984, 25:15-29 [17] Dafermos C M. Generalized characteristics in hyperbolic systems of conservation laws. Arch Ration Mech Anal, 1989, 107:127-155 [18] Fan H, Jack K H. Large time behavior in inhomogeneous conservation laws. Arch Ration Mech Anal, 1993, 125:201-216 [19] Lyberopoulos A N. Asymptotic oscillations of solutions of scalar conservation laws with convexity under the action of a linear excitation. Quart Appl Math, 1990, 48:755-765 [20] Shearer M, Dafermos C M. Finite time emergence of a shock wave for scalar conservation laws. J Hyperbolic Differential Equations, 2010, 1:107-116 |
[1] | Ting ZHANG, Wancheng SHENG. GLOBAL SOLUTIONS OF THE PERTURBED RIEMANN PROBLEM FOR THE CHROMATOGRAPHY EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(1): 57-82. |
[2] | Lin HE, Yongkai LIAO, Tao WANG, Huijiang ZHAO. ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY [J]. Acta Mathematica Scientia, 2018, 38(5): 1515-1548. |
[3] | Jianlin ZHANG, Yuming QIN. EXACT SOLUTIONS FOR THE CAUCHY PROBLEM TO THE 3D SPHERICALLY SYMMETRIC INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(3): 778-790. |
[4] | Kuo-Shou CHIU. ASYMPTOTIC EQUIVALENCE OF ALTERNATELY ADVANCED AND DELAYED DIFFERENTIAL SYSTEMS WITH PIECEWISE CONSTANT GENERALIZED ARGUMENTS [J]. Acta mathematica scientia,Series B, 2018, 38(1): 220-236. |
[5] | Xing LI, Yan YONG. LARGE TIME BEHAVIOR OF SOLUTIONS TO 1-DIMENSIONAL BIPOLAR QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTORS [J]. Acta mathematica scientia,Series B, 2017, 37(3): 806-835. |
[6] | Nguyen Tien DUNG. ASYMPTOTIC BEHAVIOR OF LINEAR ADVANCED DIFFERENTIAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(3): 610-618. |
[7] | TANG PingFan, FANG BeiXiang, WANG YAGuang. ON LOCAL STRUCTURAL STABILITY OF ONE-DIMENSIONAL SHOCKS IN RADIATION HYDRODYNAMICS [J]. Acta mathematica scientia,Series B, 2015, 35(1): 1-44. |
[8] | Zagharide Zine EL ABIDINE. COMBINED EFFECTS IN A SEMILINEAR POLYHARMONIC PROBLEM IN THE UNIT BALL [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1404-1416. |
[9] | ZHANG Ying-Hui, WU Guo-Chun. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR THE 3D COMPRESSIBLE NON–ISENTROPIC EULER EQUATIONS WITH DAMPING [J]. Acta mathematica scientia,Series B, 2014, 34(2): 424-434. |
[10] | CHEN Gui-Qang, XIAO Chang-Guo, ZHANG Yong-Qian. EXISTENCE OF ENTROPY SOLUTIONS TO TWO-DIMENSIONAL STEADY EXOTHERMICALLY REACTING EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(1): 1-38. |
[11] | YANG Hu, XUE Kai. RUIN PROBABILITY IN A SEMI-MARKOV RISK MODEL WITH CONSTANT INTEREST FORCE AND HEAVY-TAILED CLAIMS [J]. Acta mathematica scientia,Series B, 2013, 33(4): 998-1006. |
[12] | XIA Li, LI Jing-Na, YAO Zheng-An. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A SINGULAR PARABOLIC EQUATION [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1875-1882. |
[13] | WANG Zhen, ZHANG Qing-Ling. THE RIEMANN PROBLEM WITH DELTA INITIAL DATA FOR THE ONE-DIMENSIONAL CHAPLYGIN GAS EQUATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 825-841. |
[14] | Liu Xiaomin, Wang Zhen. THE RIEMANN PROBLEM FOR THE NONLINEAR DEGENERATE WAVE EQUATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(6): 2313-2322. |
[15] | WU Shun-Tang. GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1436-1448. |
|