Acta mathematica scientia,Series B ›› 2017, Vol. 37 ›› Issue (4): 1048-1060.doi: 10.1016/S0252-9602(17)30057-7
• Articles • Previous Articles Next Articles
Pawe? SZAFRANIEC
Received:
2016-02-29
Revised:
2016-05-23
Online:
2017-08-25
Published:
2017-08-25
Supported by:
Research supported by the Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under Grant Agreement No. 295118 and the National Science Center of Poland under the Maestro Advanced Project No. DEC-2012/06/A/ST1/00262
Paweł SZAFRANIEC. ANALYSIS OF AN ELASTO-PIEZOELECTRIC SYSTEM OF HEMIVARIATIONAL INEQUALITIES WITH THERMAL EFFECTS[J].Acta mathematica scientia,Series B, 2017, 37(4): 1048-1060.
[1] Alashti R A, Khorsand M, Tarahhomi M H. Thermo-elastic analysis of a functionally graded spherical shell with piezoelectric layers by differential quadrature method. Scientia Iranica B, 2013, 20:109-119 [2] Benaissa H, Essoufi El-H, Fakhar R. Existence results for unilateral contact problem with friction of thermo electro-elasticity. Appl Math Mech, 2015, 36:911-926 [3] Benaissa H, Essoufi El-H, Fakhar R. Variational analysis of a thermo-piezoelectric contact problem with friction. J Adv Res Appl Math, 2015, 7:52-75 [4] Chau O, Oujja R, Rochdi M. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Disc Cont Dyn Systems, Ser S, 2008, 1:61-70 [5] Clarke F H. Optimization and Nonsmooth Analysis. New York:Wiley-Interscience, 1983 [6] Denkowski Z, Migórski S, Papageorgiou N S. An Introduction to Nonlinear Analysis:Applications. New York:Kluwer/Plenum, 2003 [7] Denkowski Z, Migórski S, Hemivariational inequalities in thermoviscoelasticity. Nonlinear Anal, 2005, 63:87-97 [8] Denkowski Z, Migórski S. A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact. Nonlinear Anal, 2005, 60:1415-1441 [9] Ikeda T. Fundamentals of Piezoelectricity. Oxford:Oxford University Press, 1990 [10] Hadjiloizi D A, Georgiades A V, Kalamkarov A L, Jothi S. Micromechanical modeling of piezo-magnetothermo-elastic composite structures:Part Ⅱ applications. European J Mech A/Solids, 2013, 39:313-327 [11] Han W, Sofonea M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Providence, RI:Amer Math Soc, International Press, 2002 [12] Migorski S. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Disc Contin Dyn Syst Ser S, 2008, 1:117-126 [13] Migorski S. Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl Anal, 2005, 84:669-699 [14] Migórski S, Ochal A. Boundary hemivariational inequality of parabolic type. Nonlinear Anal, 2004, 57:579-596 [15] Migorski S, Ochal A, Sofonea M. A dynamic frictinal contact problem for piezoelectric materials. J Math Anal Appl, 2010, 361:161-176 [16] Migorski S, Ochal A, Sofonea M. Variational analysis of fully coupled electro-elastic frictional contact problems. Math Nach, 2010, 283:1314-1335 [17] Migorski S, Ochal A, Sofonea M. Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics, Vol 26. New York:Springer, 2013 [18] Migorski S, Ochal A, Sofonea M. Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact. Math Model Meth Appl Sci, 2008, 18:271-290 [19] Migorski S, Ochal A. A unified approach to dynamic contact problems in viscoelasticity. J Elasticity, 2006, 83:247-275 [20] Migorski S, Ochal A, Sofonea M. Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact. Math Model Methods Appl Sci, 2008, 18:271-290 [21] Migorski S, Szafraniec P. A class of dynamic frictional contact problems governed by a system of hemivariational inqualities in thermoviscoelasticity. Nonlinear Anal:RWA, 2014, 15:158-171 [22] Migorski S, Ochal A. Dynamic bilateral contact problem for viscoelastic piezoelectric material with adhesion. Nonlinear Anal, 2008, 69:495-509 [23] Naniewicz Z, Panagiotopoulos P D. Mathematical Theory of Hemivariational Inequalities and Applications. New York, Basel, Hong Kong:Marcel Dekker, Inc, 1995 [24] Panagiotopoulos P D. Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Basel:Birkhäuser, 1985 [25] Panagiotopoulos P D. Hemivariational Inequalities, Applications in Mechanics and Engineering. Berlin:Springer-Verlag, 1993 [26] Sofonea M, Essoufi El H. A piezoelectric contact problem with slip dependent coefficient of friction. Math Model Anal, 2004, 9:229-242 [27] Yang J, Yang J S. Introduction to the Theory of Piezoelectricity. New York:Springer, 2005 [28] Yao W, Qiu L. A dynamic quasistatic contact problem for viscoelastic materials with friction and damage. Appl Math Sci, 2012, 6:5801-5810 [29] Zeidler E. Nonlinear Functional Analysis and Applications Ⅱ A/B. New York:Springer, 1990 |
[1] | Ping LI, Congbian MA, Youliang HOU. THE OSCILLATION OF THE POISSON SEMIGROUP ASSOCIATED TO PARABOLIC HERMITE OPERATOR [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1214-1226. |
[2] | Rui LI, Chong LAI, Yonghong WU. GLOBAL WEAK SOLUTIONS TO A GENERALIZED BENJAMIN-BONA-MAHONY-BURGERS EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 915-925. |
[3] | Yong LIN, Yiting WU. BLOW-UP PROBLEMS FOR NONLINEAR PARABOLIC EQUATIONS ON LOCALLY FINITE GRAPHS [J]. Acta mathematica scientia,Series B, 2018, 38(3): 843-856. |
[4] | Hassan Eltayeb GADAIN. SOLVING COUPLED PSEUDO-PARABOLIC EQUATION USING A MODIFIED DOUBLE LAPLACE DECOMPOSITION METHOD [J]. Acta mathematica scientia,Series B, 2018, 38(1): 333-346. |
[5] | Stanis ław MIGÓRSKI, Justyna OGORZA LY. A VARIATIONAL-HEMIVARIATIONAL INEQUALITY IN CONTACT PROBLEM FOR LOCKING MATERIALS AND NONMONOTONE SLIP DEPENDENT FRICTION [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1639-1652. |
[6] | Guangwu WANG, Boling GUO. EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION TO THE INCOMPRESSIBLE NAVIER-STOKES-LANDAU-LIFSHITZ MODELIN 2-DIMENSION [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1361-1372. |
[7] | Jae-Myoung KIM. LOCAL REGULARITY CRITERIA OF A SUITABLE WEAK SOLUTION TO MHD EQUATIONS [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1033-1047. |
[8] | Boling GUO, Xiaoyu XI. GLOBAL WEAK SOLUTIONS TO ONE-DIMENSIONAL COMPRESSIBLE VISCOUS HYDRODYNAMIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2017, 37(3): 573-583. |
[9] | Bei LI, Hongjin ZHU, Caidi ZHAO. TIME DECAY RATE OF SOLUTIONS TO THE HYPERBOLIC MHD EQUATIONS IN R3 [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1369-1382. |
[10] | Hua CHEN, Wenbin LÜ, Shaohua WU. SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1285-1304. |
[11] | Elhoussine AZROUL, Badr LAHMI, Ahmed YOUSSFI. STRONGLY NONLINEAR VARIATIONAL PARABOLIC EQUATIONS WITH p(x)-GROWTH [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1383-1404. |
[12] | Jinkai LI, Zhouping XIN. GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THE NON-ISOTHERMAL NEMATIC LIQUID CRYSTALS IN 2D [J]. Acta mathematica scientia,Series B, 2016, 36(4): 973-1014. |
[13] | Qishu YAN. PERIODIC OPTIMAL CONTROL PROBLEMS GOVERNED BY SEMILINEAR PARABOLIC EQUATIONS WITH IMPULSE CONTROL [J]. Acta mathematica scientia,Series B, 2016, 36(3): 847-862. |
[14] | Yi JIANG, Chuan LUO. OPTIMAL CONDITIONS OF GLOBAL EXISTENCE AND BLOW-UP FOR A NONLINEAR PARABOLIC EQUATION [J]. Acta mathematica scientia,Series B, 2016, 36(3): 872-880. |
[15] | Wenqiang ZHAO. REGULARITY OF RANDOM ATTRACTORS FOR A STOCHASTIC DEGENERATE PARABOLIC EQUATIONS DRIVEN BY MULTIPLICATIVE NOISE [J]. Acta mathematica scientia,Series B, 2016, 36(2): 409-427. |
|