[1] Gamba I M, Jüngel A, Vasseur A. Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations. J Differential Equations, 2009, 247(11):3117-3135 [2] Caldeira A, Leggett A. Path integral approach to quantum Brownian motion. Phys A, 1983, 121(3):587-616 [3] Diósi L. On high-temperature Markovian equaton for quantum Brownian motion. Europhys Lett, 1993, 22(1):1-3 [4] Castella F, Erdös L, Frommlet F, Markowich P. Fokker-Planck equations as scaling limits of reversible quantum systems. J Stat Phys, 2000, 100(3/4):543-601 [5] Gualdani M, Jüngel A. Analysis of viscous quantum hydrodynamic equations for semiconductors. European J Appl Math, 2004, 15(5):577-595 [6] Jüngel A. Transport equations for semiconductors. Lecture notes in Phys, vol. 773, Springer, Berlin, 2009 [7] Jüngel A, Milišić J P. Physical and numerical viscosity for quantum hydrodynamics. Commun Math Sci, 2007, 5(2):447-471 [8] Gamba I M, Jüngel A. Positive solutions to singular third order differential equations for quantum fluids. Arch Rational Mech Anal, 2001, 156(3):183-203 [9] Gamba I M, Jüngel A. Asymptotic limits in quantum trajectory models. Comm Patial Differential Equations, 2002, 27(3/4):669-691 [10] Baccarani G, Wordeman M. An investigation of steady-state velocity overshoot in silicon. Solid State Electron, 1985, 28(4):407-416 [11] Antonelli P, Marcati P. On the finite energy weak solutions to a system in quantum fluid dynamics. Comm Math Phys, 2009, 287(2):657-686 [12] Jüngel A. A steady-state quantum Euler-Poisson system for potential flows. Comm Math Phys, 1998, 194(2):463-479 [13] Nishibata S, Suzuki M. Initial boundary value problems for a quantum hydrodynamic model of semiconductors:Asymptotic behaviors and classical limites. J Differential Equations, 2008, 244(4):836-874 [14] Jia Y L, Li H L. Large-time behavior of solutions of quantum hydrodynamic model for semiconductors. Acta Mathematica Scientia, 2006, 26B(1):163-178 [15] Bresch D, Desjardins B, Lin C K. On some compressible fluid models:Korteweg, lubrication, and shallow water systems. Comm Patial Differential Equations, 2003, 28(3/4):843-868 [16] Hsiao L, Li H L. Dissipation and dispersion approximation to hydrodynamic equations and asymptotic limit. J Patial Differential Equations, 2008, 21:59-76 [17] Bresch D, Desjardins B. Quelques modeles diffusifs capillaires de type Korteweg. C R Mecanique, 2004, 332(11):881-886 [18] Lefloch P, Shelukhin V. Symmetries and global solvability of the isothermal gas dynamic equations. Arch Rational Mech Anal, 2005, 175(3):389-430 [19] Chen L, Dreher M. The viscous model of quantum hydrodynamics in several dimensions. Math Models Methods Appl Sci, 2007, 17(7):1065-1093 [20] Gamba I M, Gualdani M, Zhang P. On the blowping up of solutions to the quantum hydrodynamic equations in a bounded domain. Monatsh Math, 2009, 157(1):37-54 [21] Jüngel A. Global weak solutions to compressible Navier-Stokes equations for quantum fluids. Siam J Math Aanl, 2010, 42(3):1025-1045 [22] Li H L, Marcati P. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Comm Math Phys, 2004, 245(2):215-247 [23] Feireisl E. Dynamics of viscous compressible fluids. Oxford University Press, 2004 |