[1] Wang M X, Ding X Q. Global existence, asymptotic behavior, and blow-up problems for a semilinear heat equation. Science in China (Series A), 1993, 36(4): 420-430
[2] Gan Z H, Zhang J. Sharp conditions of global existence for the generalized Davey-Stewartson system in three dimensional space. Acta Mathematica Scientia, 2006, 26A(1): 087-092
[3] Todorova G. Stable and unstable sets for the Cauchy ptoblem for a nonlinear wave equation with nonlinear damping and soutce terms. J Math Anal Appl, 1999, 239: 213-226
[4] Ma L. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Commun Pure Appl Anal, 2013, 12(2): 1103-1110
[5] Zhang J. Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nolinear Analysis TMA, 2002, 48: 191-207
[6] Kobayashi K, Sirao T, et al. On the growing up problem for semilinear heat equations. J Math Soc Japan, 1977, 29: 407-424
[7] Tsutsumi M. Existence & non-existence of global solutions for nonlinear parabolic equations. Publ RIMS, 1972, 8(73): 211-299
[8] Weissler F B. Existence & non-existence of global solutions for a semilinear heat equations. Isreal J Math, 1981, 38: 29-40
[9] Lou B D. Positive equilibrium solutions of semilinear parabolic equations. Acta Math Sci, 2006, 26B(4): 670-678
[10] Adams R. Sobolev Spaces. New York: Academic Press, 1975
[11] Zhang J. Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z Angew Math Phys, 2000, 51: 498-503 |