Acta mathematica scientia,Series B ›› 2017, Vol. 37 ›› Issue (4): 1061-1082.doi: 10.1016/S0252-9602(17)30058-9
• Articles • Previous Articles Next Articles
Minjie JIANG1, Wei YAN1, Yimin ZHANG2
Received:
2016-02-24
Revised:
2016-12-24
Online:
2017-08-25
Published:
2017-08-25
Contact:
Wei YAN,E-mail:yanwei19821115@sina.cn
E-mail:yanwei19821115@sina.cn
About author:
Minjie JIANG,E-mail:1764915956@qq.com;Yimin ZHANG,E-mail:zhangym802@126.com
Supported by:
This work is supported by Natural Science Foundation of China NSFC (11401180 and 11471330). The second author is also supported by the Young Core Teachers Program of Henan Normal University (15A110033). The third author is also supported by the Fundamental Research Funds for the Central Universities (WUT:2017 IVA 075).
Minjie JIANG, Wei YAN, Yimin ZHANG. SHARP WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR THE HIGHER-ORDER DISPERSIVE EQUATION[J].Acta mathematica scientia,Series B, 2017, 37(4): 1061-1082.
[1] Bejenaru I, Tao T. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation. J Funct Anal, 2006, 233:228-259 [2] Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part Ⅱ:The KdV equation. Geom Funct Anal, 1993, 3:107-156 [3] Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part Ⅱ:The KdV equation. Geom Funct Anal, 1993, 3:209-262 [4] Bourgain J. Periodic Korteweg-de Vries equation with measures as initial data. Selecta Math, 1997, 3:115-159 [5] Constantin P, Saut J C. Local smoothing properties of dispersive equations. J Amer Math Soc, 1988, 1:413-439 [6] Ginibre J, Tsutsumi Y, Velo G. On the Cauchy problem for the Zakharov System. J Funct Anal, 1997, 151:384-436 [7] Guo Z H. Global well-posedness of the Korteweg-de Vries equation in H-3/4. J Math Pures Appl, 2009, 91:583-597 [8] Guo Z H, Kwak C, Kwon S. Rough solutions of the fifth-order KdV equations. J Funct Anal, 2013, 265:2791-2829 [9] Guo Z H, Wang B X. Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation. J Diff Eqns, 2009, 246:3864-3901 [10] Grünrock A. On the hierarchies of higher order mKdV and KdV equations. Central European J Math, 2010, 8:500-536 [11] Ionescu A D, Kenig C E. Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J Amer Math Soc, 2007, 20:753-798 [12] Ionescu A D, Kenig C E, Tataru D. Global well-posedness of the KP-I initial-value problem in the energy space. Invent Math, 2008, 173:265-304 [13] Kato T. Well-posedness for the fifith order KdV equation. Funkcial Ekvac, 2012, 55:17-53 [14] Kenig C E, Ponce G, Vega L. Higher-order nonlinear dispersive equations. Proc Amer Math Soc, 1994, 122:157-166 [15] Kenig C E, Pilod D. Well-posedness for the fifth-order KdV equation in the energy space. Trans Amer Math Soc, 2015, 367:2551-2612 [16] Kishimoto N. Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity. Diff Int Eqns, 2009, 22:447-464 [17] Kishimoto N, Tsugawa K. Local well-posedness for quadratic nonlinear Schrödinger equations and the "good" Boussinesq equation. Diff Int Eqns, 2010, 23:463-493 [18] Li Y S, Huang J H, Yan W. The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity. J Diff Eqns, 2015, 259:1379-1408 [19] Pilod D. On the Cauchy problem for higher-order nonlinear dispersive equations. J Diff Eqns, 2008, 245:2055-2077 [20] Wang H, Cui S. Well-posedness of the Cauchy problem of a water wave equation with low regularity initial data. Math. Computer Mode, 2007, 45:1118-1132 [21] Yan W, Li Y S, Li S M. Sharp well-posedness and ill-posedness of a higher-ordermodified Camassa-Holm equation. Diff Int Eqns, 2012, 25:1053-1074 [22] Yan W, Li Y S. Ill-posedness of madified Kawahara equation and Kaup-Kupershmidt equation. Acta Math Sci, 2012, 32B:710-716 |
[1] | Nai-Sher YEH, Chung-Cheng KUO. MULTIPLICATIVE PERTURBATIONS OF LOCAL α-TIMES INTEGRATED C-SEMIGROUPS [J]. Acta mathematica scientia,Series B, 2017, 37(3): 877-888. |
[2] | Hui KAN, Xiaozhou YANG. A TWO-DIMENSIONAL GLIMM TYPE SCHEME ON CAUCHY PROBLEM OF TWO-DIMENSIONAL SCALAR CONSERVATION LAW [J]. Acta mathematica scientia,Series B, 2017, 37(1): 1-25. |
[3] | Zhong WANG, Shangbin CUI. ON THE CAUCHY PROBLEM OF A COHERENTLY COUPLED SCHRÖDINGER SYSTEM [J]. Acta mathematica scientia,Series B, 2016, 36(2): 371-384. |
[4] | Chung-Cheng KUO. ADDITIVE PERTURBATIONS OF LOCAL C-SEMIGROUPS [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1566-1576. |
[5] | Fan YANG, Chuli FU, Xiaoxiao LI. A MODIFIED TIKHONOV REGULARIZATION METHOD FOR THE CAUCHY PROBLEM OF LAPLACE EQUATION [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1339-1348. |
[6] | FU Yang-Geng, LIU Zheng-Rong, TANG Hao. NON-UNIFORM DEPENDENCE ON INITIAL DATA FOR THE MODIFIED CAMASSA-HOLM EQUATION ON THE LINE [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1781-1794. |
[7] | WANG Hong-Wei. LOCAL WELL-POSEDNESS IN SOBOLEV SPACES WITH NEGATIVE INDICES FOR A SEVENTH ORDER DISPERSIVE EQUATION [J]. Acta mathematica scientia,Series B, 2014, 34(1): 199-208. |
[8] | GENG Shi-Feng, CHEN Guo-Wang. GLOBAL EXISTENCE OF SOLUTIONS OF CAUCHY PROBLEM FOR GENERALIZED BBM-BURGERS EQUATION [J]. Acta mathematica scientia,Series B, 2013, 33(4): 1007-1023. |
[9] | ZHOU Jun. ON THE CAUCHY PROBLEM FOR A REACTION-DIFFUSION SYSTEM WITH SINGULAR NONLINEARITY [J]. Acta mathematica scientia,Series B, 2013, 33(4): 1031-1048. |
[10] | GUO Hong-Xia, CHEN Guo-Wang. A NOTE ON “THE CAUCHY PROBLEM FOR COUPLED IMBQ EQUATIONS” [J]. Acta mathematica scientia,Series B, 2013, 33(2): 375-392. |
[11] | Tujin Kim, CHANG Qian-Shun, XU Jing. NOTE ON AN OPEN PROBLEM OF HIGHER ORDER NONLINEAR EVOLUTION EQUATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2369-2376. |
[12] | Mohamed Najeme. PRECISE SMOOTHING EFFECTS OF HOMOGENEOUS LANDAU EQUATION IN SOBOLEV SPACES [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1245-1254. |
[13] | JIANG Zheng-Lu, TIAN Hong-Jiong. GLOBAL SOLUTION TO THE CAUCHY PROBLEM ON A UNIVERSE FIREWORKS MODEL [J]. Acta mathematica scientia,Series B, 2010, 30(1): 281-288. |
[14] | Chen Guowang; Xue Hongxia. PERIODIC BOUNDARY VALUE PROBLEM AND CAUCHY PROBLEM OF THE GENERALIZED CUBIC DOUBLE DISPERSION EQUATION [J]. Acta mathematica scientia,Series B, 2008, 28(3): 573-587. |
[15] | Deng Yinbin; Yang Fen. ON THE STABILITY OF THE POSITIVE RADIAL STEADY STATES FOR A SEMILINEAR CAUCHY PROBLEM INVOLVING CRITICAL EXPONENTS [J]. Acta mathematica scientia,Series B, 2008, 28(2): 348-354. |
|