Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (3): 843-856.doi: 10.1016/S0252-9602(18)30788-4
• Articles • Previous Articles Next Articles
Yong LIN, Yiting WU
Received:
2017-04-14
Revised:
2017-07-30
Online:
2018-06-25
Published:
2018-06-25
Contact:
Yiting WU
E-mail:yitingly@126.com
Supported by:
The first author is supported by the National Science Foundation of China (11671401); the second author is supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (17XNH106).
Yong LIN, Yiting WU. BLOW-UP PROBLEMS FOR NONLINEAR PARABOLIC EQUATIONS ON LOCALLY FINITE GRAPHS[J].Acta mathematica scientia,Series B, 2018, 38(3): 843-856.
[1] Bauer F, Hua B, Jost J. The dual cheeger constant and spectra of infinite graphs. Adv Math, 2014, 251(2):147-194 [2] Bebernes J, Eberly D. Mathematical Problems from Combustion Theory. New York:Springer, 1989 [3] Chung F R K. Spectral Graph Theory, CBMS Reg Conf Ser Math. Providence, RI:Amer Math Soc, 1997 [4] Chung Y S, Lee Y S, Chung S Y. Extinction and positivity of the solutions of the heat equations with absorption on networks. J Math Anal Appl, 2011, 380(2):642-652 [5] Dodziuk J, Kendall W S. Combinatorial Laplacians and the isoperimetric inequality//Ellworthy K D. From Local Times to Global Geometry. Control and Physics. Pitman Research Notes in Mathematics Series 150. Essex:Longman Scientific and Technical, 1986:68-74 [6] Fujita H. On the blowing up of solutions of the Cauchy problem for ut=△u+u1+α. J Fac Sci Univ Tokyo Sect A Math, 1966, 13(2):109-124 [7] Fujita H. On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations. Symp Pure Mathematics, 1969, 18:105-113 [8] Grigor'yan A. Analysis on Graphs. University Bielefeld, 2009 [9] Grigor'yan A, Lin Y, Yang Y. Yamabe type equations on graphs. J Differential Equations, 2016, 261(9):4924-4943 [10] Grigor'yan A, Lin Y, Yang Y. Kazdan-Warner equation on graph. Calc Var Partial Differential Equations, 2016, 55(4):92(13 pages) [11] Grigor'yan A, Lin Y, Yang Y. Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci China Math, 2017, 60(7):1311-1324 [12] Haeseler S, Keller M, Lenz D, Wojciechowski R. Laplacians on infinite graphs:Dirichlet and Neumann boundary conditions. J Spectr Theory, 2012, 2(4):397-432 [13] Kaplan S. On the growth of solutions of quasilinear parabolic equations. Comm Pure Appl Math, 1963, 16:305-333 [14] Lin Y, Wu Y. On-diagonal lower estimate of heat kernels on graphs. J Math Anal Appl, 2017, 456:1040-1048 [15] Lin Y, Wu Y. The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc Var Partial Differential Equations, 2017, 56(4):102(22 pages) [16] Liu W, Chen K, Yu J. Extinction and asymptotic behavior of solutions for the ω-heat equation on graphs with source and interior absorption. J Math Anal Appl, 2016, 435(1):112-132 [17] Osgood W F. Beweis der Existenz einer Lösung der Differentialgleichung dy/dx=f(x, y) ohne Hinzunahme der Cauchy-Lipschitzschen Bedingung. Monatshefte der Mathemratik unid Physik, 1898, 9(1):331-345 [18] Weber A. Analysis of the physical Laplacian and the heat flow on a locally finite graph. J Math Anal Appl, 2012, 370(1):146-158 [19] Wojciechowski R. Heat kernel and essential spectrum of infinite graphs. Indiana Univ Math J, 2008, 58(3):1419-1442 [20] Xin Q, Xu L, Mu C. Blow-up for the ω-heat equation with Dirichelet boundary conditions and a reaction term on graphs. Appl Anal, 2014, 93(8):1691-1701 |
[1] | Yue-Loong CHANG, Meng-Rong LI, C. Jack YUE, Yong-Shiuan LEE, Tsung-Jui CHIANG-LIN. MATHEMATICAL MODEL FOR THE ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH A PARTICULAR EMDEN-FOWLER EQUATION u"-n-q-1u (n)q=0 [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1311-1321. |
[2] | Xincai ZHU. EXISTENCE AND BLOW-UP BEHAVIOR OF CONSTRAINED MINIMIZERS FOR SCHRÖDINGER-POISSON-SLATER SYSTEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 733-744. |
[3] | Lingyan YANG, Xiaoguang LI, Yonghong WU, Louis CACCETTA. GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION [J]. Acta mathematica scientia,Series B, 2017, 37(4): 941-948. |
[4] | Elhoussine AZROUL, Badr LAHMI, Ahmed YOUSSFI. STRONGLY NONLINEAR VARIATIONAL PARABOLIC EQUATIONS WITH p(x)-GROWTH [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1383-1404. |
[5] | Huihui KONG, Hai-Liang LI, Xingwei ZHANG. A BLOW-UP CRITERION OF SPHERICALLY SYMMETRIC STRONG SOLUTIONS TO 3D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH FREE BOUNDARY [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1153-1166. |
[6] | Shengguo ZHU. BLOW-UP OF CLASSICAL SOLUTIONS TO THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM [J]. Acta mathematica scientia,Series B, 2016, 36(1): 220-232. |
[7] | Pan ZHENG, Chunlai MU, Xuegang HU, Fuchen ZHANG. SECONDARY CRITICAL EXPONENT AND LIFE SPAN FOR A DOUBLY SINGULAR PARABOLIC EQUATION WITH A WEIGHTED SOURCE [J]. Acta mathematica scientia,Series B, 2016, 36(1): 244-256. |
[8] | Yueloong CHANG, Mengrong LI. A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH EMDEN-FOWLER EQUATION FOR SOME ENTERPRISES [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1014-1022. |
[9] | LI Yu-Huan, MI Yong-Sheng, MU Chun-Lai. PROPERTIES OF POSITIVE SOLUTIONS FOR A NONLOCAL NONLINEAR DIFFUSION EQUATION WITH NONLOCAL NONLINEAR BOUNDARY CONDITION [J]. Acta mathematica scientia,Series B, 2014, 34(3): 748-758. |
[10] | Meng-Rong LI, Yue-Loong CHANG, Yu-Tso LI. A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH EMDEN-FOWLER EQUATION (II) [J]. Acta mathematica scientia,Series B, 2013, 33(4): 1127-1140. |
[11] | WU Xiu-Lan, GAO Wen-Jie. BLOW-UP OF THE SOLUTION FOR A CLASS OF POROUS MEDIUM EQUATION WITH POSITIVE INITIAL ENERGY [J]. Acta mathematica scientia,Series B, 2013, 33(4): 1024-1030. |
[12] | ZHOU Shou-Ming, MU Chun-Lai, WANG Liang-Zhan. SELF-SIMILAR SOLUTIONS AND BLOW-UP PHENOMENA FOR A TWO-COMPONENT SHALLOW WATER SYSTEM [J]. Acta mathematica scientia,Series B, 2013, 33(3): 821-829. |
[13] | LING Zheng-Qiu, WANG Ze-Jia, ZHANG Guo-Qiang. THE SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP CRITERIA FOR A DIFFUSION SYSTEM [J]. Acta mathematica scientia,Series B, 2013, 33(1): 139-149. |
[14] | XIE Jun-Hui, DAI Qiu-Yi, LIU Fang. THRESHOLD RESULT FOR SEMILINEAR PARABOLIC EQUATIONS WITH INDEFINITE NON-HOMOGENEOUS TERM [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2302-2314. |
[15] | XU Xin-Ying. A BLOW-UP CRITERION FOR 3-D NON-RESISTIVE COMPRESSIBLE HEAT-CONDUCTIVE MAGNETOHYDRODYNAMIC EQUATIONS#br# WITH INITIAL VACUUM [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1883-1900. |
|