[1] Brumback B, Rice J A. Smoothing spline models for the analysis of nested and crossed samples of curves (with discussion). J Amer Statist Assoc, 1998, 93: 961--994
[2] Carroll R J, Ruppert D, Welesh A H. Nonparametric estimation via local estimating equations. J Amer Statist Assoc, 1998, 93: 214--227
[3] Chen H, Shiau J. Data-driven efficient estimation for a partially linear model. Ann Statist, 1994, 22: 211--237
[4] Chen R, Tsay R. Functional-coefficient autoregressive models. J Amer Statist Assoc, 1993, 88: 298--308
[5] Donald S G, Newey W K. Series estimation of semilinear models. J Multivariate Anal, 1994, 50: 30--40
[6] Engle R F, Granger W J, Rice J, Weiss A. Semiparametric estimates of the relation between weather and electricity sales. J Amer Statist Assoc, 1986, 80: 310--319
[7] Eubank R, Speckman P. Trigonometric series regression estimators with an application to partially linear models. J Multivariate Anal, 1993, 32: 70--84
[8] Fan J, H\"ardle W, Mammen E. Direct estimation of low-dimensional components in additive models. Ann Statist, 1998, 26: 943--971
[9] Fan J, Huang T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 2005, 11: 1031--1057
[10] Fan J, Zhang C, Zhang J. Generalized likelihood ratio statistics and Wilks phenomenon. Ann Statist, 2001, 29: 153--193
[11] Fan J, Zhang W. Statistical estimation in varying coefficient models. Ann Statist, 1999, 27: 1491--1518
[12] Gao J. The laws of the iterated logarithm of some estimates in partly linear models. Statist Probab Lett, 1995, 25: 153--162
[13] Hamilton A, Truong K. Local linear estimation in partly linear models. J Multivariate Anal, 1997, 60: 1--19
[14] Hardle W, Liang H, Gao J T. Partially linear models. Heidelberg: Physica-Verlag, 2000
[15] Hastie T J, Tibshirani R. Varying-coefficient models. J Roy Statist Soc B, 1993, 55: 757--796
[16] Hoover D R, Rice J A, Wu C O, Yang L P. Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika, 1998, 85: 809--822
[17] Huang J Z, Wu C O, Zhou L. Varying-coefficient model and biasis function approximations for the analysis of repeated measurements. Biometrika, 2002, 89: 809--822
[18] Lai T L, Robbins H, Wei C Z. Strong consistency of least squares estimates in multiple regression II. J Mulutivariate Anal, 1979, 9: 343--361
[19] Li Q, Huang C J, Li D, Fu T T. Semiparametric smooth coefficient models. J Business and Econ Statist, 2002, 3: 412--422
[20] Liang H, H\"ardle W, Carroll R J. Estimation in a semiparametric partially linear errors-in-variables model. Ann Statist, 1999, 27: 1519--1535
[21] Park M G, Sun J. Tests in projection pursuit regression. J Statist Plann Inference, 1998, 75: 65--90
[22] Robinson P. Root-N-consistent semiparametric regression. Econometrica, 1988, 56: 931--954
[23] Severini T A, Staniswalis J G. Quasilikehood estimation in semiparametric models. J Amer Statist Assoc, 1994, 90: 501--511
[24] Shi P, Li G. A note of the convergence rates of M-estimates for partially linear model. Statistics, 1995, 26: 27--47
[25] Speckman P. Kernel smoothing in partial linear models. J Roy Statist Soc B, 1988, 50: 413--436
[26] Stone C J. Optimal global rates of convergence for nonparametric regression. Ann Statist, 1982, 10: 1040--1053
[27] Stout W F. Almost Sure Convergence. New York: Academic Press, 1974
[28] Xia Y, Li W K. On the estimation and testing of functional-coefficient linear models. Statistica Sinica, 1999, 9: 737--757
[29] Wu C O, Chiang C T, Hoover D R. Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data.
J Amer Statist Assoc, 1998, 93: 1388--1402
[30] Zhang W, Lee S Y, Song X. Local polynomial fitting in semivarying coefficient models. J Multivariate Anal, 2002, 82: 166--188
[31] Zhu L, Fang K. Asymptotics for kernel estimate of sliced inverse regression. Ann Statist, 1996, 24: 1053--1068
|