Acta mathematica scientia,Series B ›› 2025, Vol. 45 ›› Issue (1): 189-199.doi: 10.1007/s10473-025-0115-9
Previous Articles Next Articles
Gaoyong Zhang
Received:
2024-09-03
Published:
2025-02-06
About author:
Gaoyong Zhang, E-mail,: gaoyong.zhang@courant.nyu.edu
Supported by:
CLC Number:
Gaoyong Zhang. ISOPERIMETRIC INEQUALITIES FOR INTEGRAL GEOMETRIC INVARIANTS OF RANDOM LINES[J].Acta mathematica scientia,Series B, 2025, 45(1): 189-199.
[1] Bourgain J, Brezis H, Mironescu P. Another look at Sobolev spaces// Menaldi J L, Rofman E, Sulem A. Optimal Control and Partial Differential Equations. A volume in honor of A. Bensoussans's 60th birthday. Amsterdam: IOS Press, 2001 [2] Cheung W, Xiong G. Chord power integrals of simplices. Asian-Eur J Math, 2009, 2(4): 557-565 [3] Davy P. Inequalities for moments of secant length. Z Wahrscheinlichkeitstheorie verw Geb, 1984, 68: 243-246 [4] Gardner R J. Geometric Tomography. New York: Cambridge Univ Press, 2006 [5] Gardner R J, Zhang G. Affine inequalities and radial mean bodies. Amer J Math, 1998, 120: 505-528 [6] Heinrich L. Some inequalities for chord power integrals of parallelotopes. Monatsh Math, 2016, 181: 821-838 [7] Li W, Zou D, Li D. Moments of random chord lengths and chord power integrals. J Math (Chinese), 2012, 32(5): 935-942 [8] Ludwig M. Anisotropic fractional perimeters. J Differential Geom, 2014, 96: 77-93 [9] Lutwak E. Selected affine isoperimetric inequalities// Gruber P M, Wills J M. Handbook of Convex Geometry Vol A. Amsterdam: North-Holland, 1993: 161-176 [10] Lutwak E, Xi D, Yang D, Zhang G. Chord measures in integral geometry and their Minkowski problems. Comm Pure Appl Math, 2024, 77(7): 3277-3330 [11] Pfiefer R E. Maximum and minimum sets for some geometric mean values. J Theoret Probab, 1990, 3: 169-179 [12] Qin L. Nonlocal energies of convex body and their log-Minkowski problem. Adv Math, 2023, 427: Art 109132 [13] Ren D. The generalized support function and its applications// Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations. Beijing: Science Press, 1982: 1367-1378 [14] Ren D. Two topics in integral geometry// Proceedings of the 1981 Symposium on Differential Geometry and Differential Equations (Shanghai-Hefei). Beijing: Science Press, 1984: 309-333 [15] Ren D. Topics in Integral Geometry. Singapore: World Scientific, 1994 [16] Ren D. Random chord distributions and containment functions. Adv in Appl Math, 2014, 58: 1-20 [17] Ren D, Zhang G. Random convex sets in a lattice of parallelograms. Acta Math Sci, 1991, 11b(3): 317-326 [18] Santalo L A. Integral Geometry and Geometric Probability. Reading, Mass: Addison-Wesley, 1976 [19] Schneider R. Inequalities for random flats meeting a convex body. J Appl Prob, 1985, 22: 710-716 [20] Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014 [21] Schneider R, Weil W. Stochastic and Integral Geometry. Berlin: Springer, 2008 [22] Stoyan D. Stochastic Geometry and Its Applications. Berlin: Akademic-Verlag, 1987 [23] Xie F, Li D. Some dual kinematic formulas. Acta Math Sci, 2007, 27b(2): 395-404 [24] Xiong G, Cheung W. Chord power integrals and radial mean bodies. J Math Anal Appl, 2008, 342(1): 629-637 [25] Xiong G, Song X. Inequalities for chord power integrals. J Korean Math Soc, 2008, 45(2): 587-596 [26] Xu W. Entropy of chord distribution of convex bodies. Proc Amer Math Soc, 2019, 147: 3131-3141 [27] Zhang G. Integral geometric inequalities. Acta Math Sinica (Chinese), 1991, 34: 72-90 [28] Zhang G. Dual kinematic formulas. Trans Amer Math Soc, 1999, 351: 985-995 [29] Zou D, Li D. Some integral formulae for chord power integrals of convex bodies. J Math (Chinese), 2011, 31(2): 369-375 |
[1] | Deyi LI, Lei MA, Chunna ZENG. NOTES ON THE LOG-MINKOWSKI INEQUALITY OF CURVATURE ENTROPY [J]. Acta mathematica scientia,Series B, 2025, 45(1): 16-26. |
[2] | Yiming Li, Chuanming Zong. ON GENERALIZED KISSING NUMBERS OF CONVEX BODIES [J]. Acta mathematica scientia,Series B, 2025, 45(1): 72-95. |
[3] | Andrea Colesanti. LOG-CONCAVITY OF THE FIRST DIRICHLET EIGENFUNCTION OF SOME ELLIPTIC DIFFERENTIAL OPERATORS AND CONVEXITY INEQUALITIES FOR THE RELEVANT EIGENVALUE [J]. Acta mathematica scientia,Series B, 2025, 45(1): 143-152. |
[4] | Jiayu Li, Shujing Pan. A SURVEY ON THE ISOPERIMETRIC PROBLEM IN RIEMANNIAN MANIFOLDS [J]. Acta mathematica scientia,Series B, 2025, 45(1): 228-236. |
[5] | Haizhong Li, Yao Wan. STABILITY OF THE ISOPERIMETRIC INEQUALITY IN HYPERBOLIC PLANE [J]. Acta mathematica scientia,Series B, 2025, 45(1): 215-227. |
[6] | Zhanjie SONG, Jiaxing ZHANG. ESTIMATION OF AVERAGE DIFFERENTIAL ENTROPY FOR A STATIONARY ERGODIC SPACE-TIME RANDOM FIELD ON A BOUNDED AREA* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1984-1996. |
[7] | Changlin XIANG, Gaofeng ZHENG. SHARP MORREY REGULARITY THEORY FOR A FOURTH ORDER GEOMETRICAL EQUATION [J]. Acta mathematica scientia,Series B, 2024, 44(2): 420-430. |
[8] | Yiming DING, Liang WU, Xuyan XIANG. AN INFORMATIC APPROACH TO A LONG MEMORY STATIONARY PROCESS* [J]. Acta mathematica scientia,Series B, 2023, 43(6): 2629-2648. |
[9] | Zubiao XIAO, Zhengyu YIN. RELATIVE ENTROPY DIMENSION FOR COUNTABLE AMENABLE GROUP ACTIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(6): 2430-2448. |
[10] | Miran Jeong, Jinmi Hwangm, Sejong Kim. RIGHT MEAN FOR THE α-z BURES-WASSERSTEIN QUANTUM DIVERGENCE* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2320-2332. |
[11] | Ruifeng ZHANG, Jianghui ZHU. THE VARIATIONAL PRINCIPLE FOR THE PACKING ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1915-1924. |
[12] | Fen HE, Zhen WANG, Tingting CHEN. THE SHOCK WAVES FOR A MIXED-TYPE SYSTEM FROM CHEMOTAXIS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1717-1734. |
[13] | Juan Pan, Yunhua Zhou. SOME RESULTS ON BUNDLE SYSTEMS FOR A COUNTABLE DISCRETE AMENABLE GROUP ACTION* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1382-1402. |
[14] | Shifeng GENG, Feimin HUANG, Xiaochun WU. L2-CONVERGENCE TO NONLINEAR DIFFUSION WAVES FOR EULER EQUATIONS WITH TIME-DEPENDENT DAMPING [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2505-2522. |
[15] | Juan C. JUAJIBIOY. ON THE CAUCHY PROBLEM FOR AW-RASCLE SYSTEM WITH LINEAR DAMPING [J]. Acta mathematica scientia,Series B, 2021, 41(1): 311-318. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract 34
|
|
|||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||
Discussed |
|