[1] Bray H. The Penrose Inequality in General Relativity and Volume Comparison Theorems Involving Scalar curvature. California: Stanford University, 1997 [2] Brendle S. The isoperimetric inequality for a minimal submanifold in Euclidean space. Journal of the American Mathematical Society, 2021, 34(2): 595-603 [3] Chen C, Guan P, Li J F, Scheuer J. A fully-nonlinear flow and quermassintegral inequalities in the sphere. Pure Appl Math Q, 2022, 18(2): 437-461 [4] Chen M, Sun J. Alexandrov-Fenchel type inequalities in the sphere. Adv Math, 2022, 397: Art 108203 [5] Eichmair M, Metzger J. Large isoperimetric surfaces in initial data sets. Journal of Differential Geometry, 2013, 94(1): 159-186 [6] Gage M, Hamilton R. The heat equation shrinking convex plane curves. Journal of Differential Geometry, 1986, 23(1): 69-96 [7] Flynn J, Reznikov J. General conformally induced mean curvature flow. arXiv:2309.14679 [8] Guan P, Li J F. A mean curvature type flow in space forms. Int Math Res Not, 2015, 13: 4716-4740 [9] Guan P, Li J F. A fully-nonlinear flow and quermassintegral inequalities (in Chinese). Sci Sin Math, 2018, 48: 147-156 [10] Guan P, Li J F, Wang M. A volume preserving flow and the isoperimetric problem in warped product spaces. Transactions of the American Mathematical Society, 2019, 372(4): 2777-2798 [11] Huisken G. The volume preserving mean curvature flow. Journal F{Ü}r Die Reine Und Angewandte Mathematik, 1987, 382: 35-48 [12] Huisken G, Yau S. Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Inventiones Mathematicae, 1996, 124: 281-311 [13] Hu Y, Li H, Wei Y. Locally constrained curvature flows and geometric inequalities in hyperbolic space. Math Ann, 2022, 382: 1425-1474 [14] Li J Y, Pan S. The isoperimetric problem in the riemannian manifold admitting a non-trivial conformal vector field. Mathematische Annalen, 2024. DOI: 10.1007/s00208-024-02954-1 [15] Montiel S. Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana University Mathematics Journal, 1999, 48(2): 711-748 [16] Obata M. Conformal transformations of Riemannian manifolds. Journal of Differential Geometry, 1970, 4(3): 311-333 [17] Qing J, Tian G. On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds. Journal of the American Mathematical Society, 2007, 20(4): 1091-1110 [18] Scheuer J, Xia C. Locally constrained inverse curvature flows. Trans Amer Math Soc, 2019, 372(10): 6771-6803 [19] Schulze F. Nonlinear evolution by mean curvature and isoperimetric inequalities. Journal of Differential Geometry, 2008, 79(2): 197-241 |