[1] Borell C. Capacitary inequalities of the Brunn-Minkowski type. Math Ann, 1983, 263: 179-184 [2] Borell C. Hitting probability of killed Brownian motion: a study on geometric regularity. Ann Sci Ecole Norm Sup Paris, 1984, 17: 451-467 [3] Borell C. Greenian potentials and concavity. Math Ann, 1985, 272: 155-160 [4] Borell C. Diffusion equation and geometric inequalities. Potential Anal, 2000, 12: 49-71 [5] Brascamp H. Lieb E. On extension of the Brunn-Minkowski and Prékopa-Leindler inequality, including inequalities for log concave functions, and with an application to diffusion equation. J Funct Anal, 1976, 22: 366-389 [6] Caffarelli L A, Friedman A. Convexity of solutions to semilinear elliptic equations. Duke Math J, 1985, 52(2): 431-456 [7] Caffarelli L, Jerison D, Lieb E. On the case of equality in the Brunn-Minkowski inequality for capacity. Adv Math, 1996, 117: 193-207 [8] Caffarelli L A, Spruck J. Convexity properties of solutions of some classical variational problems. Comm in Part Diff Equa, 1982, 7: 1337-1379 [9] Colesanti A. Brunn-Minkowski inequalities for variational functionals and related problems. Adv Math, 2005, 194: 105-140 [10] Colesanti A, Francini E, Livshyts G, Salani P. The Brunn-Minkowski inequality for the first eigenvalue of the Ornstein-Uhlenbeck operator and log-concavity of the relevant eigenfunction. arXiv:2407.21354 [11] Colesanti A, Salani P. The Brunn-Minkowski inequality for p-capacity of convex bodies. Math Ann, 2003, 327: 459-479 [12] Ehrhard A. Symétrisation dans l'espace de Gauss. Math Scand, 1983, 53: 281-301 [13] Ehrhard A. Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes. Annales scientifiques E.N.S. 4e série, 1984, 17(2): 317-332 [14] Gardner R. The Brunn-Minkowski inequality. Bull Amer Math Soc, 2002, 39: 355-405 [15] Gilbarg D, Trudinger N. Elliptic Partial Differential Equations. Berlin: Springer, 1988 [16] Kennington A U. Power concavity and boundary value problems. Indiana Univ Math J, 1985, 34(3): 687-703 [17] Korevaar N. Convex solutions to nonlinear elliptic and parabolic boundary value problems. Indiana Univ Math J, 1983, 32: 603-614 [18] Korevaar N, Lewis J. Convex solutions to certain elliptic equations have constant rank Hessians. Arch Rat Mech Anal, 1987, 97: 19-32 [19] Milman E. Personal communication. 2024 [20] Pólya G, Szegö G. Isoperimetric Inequalities in Mathematical Physics. Princeton: Princeton University Press, 1951 [21] Salani P. The Brunn-Minkowski inequality for the Monge-Ampère eigenvalue. Adv Math, 2005, 194: 67-86 [22] Schneider R. Convex Bodies: the Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014 [23] Talenti G. On isoperimetric theorems in mahematical physics// Gruber P, Wills J. Handbook of Convex Geometry. Amsterdam: North Holland Publishing Co, 1993: 1131-1147 |