Acta mathematica scientia,Series B ›› 2025, Vol. 45 ›› Issue (1): 161-179.doi: 10.1007/s10473-025-0113-y
Previous Articles Next Articles
Jinrong Hu1,2, Yong Huang3, Jian Lu4, Sinan Wang5
Received:
2024-09-01
Revised:
2024-10-13
Published:
2025-02-06
About author:
Jinrong Hu, E-mail,: Hu_jinrong097@163.com; Yong Huang, E-mail,: huangyong@hnu.edu.cn; Jian Lu, E-mail,: lj-tshu04@163.com; Sinan Wang, E-mail,: wangsinan@hnu.edu.cn
Supported by:
CLC Number:
Jinrong Hu, Yong Huang, Jian Lu, Sinan Wang. THE CHORD GAUSS CURVATURE FLOW AND ITS Lp CHORD MINKOWSKI PROBLEM[J].Acta mathematica scientia,Series B, 2025, 45(1): 161-179.
[1] Aleksandrov A D. On the surface area measure of convex bodies. Mat Sb (NS), 1939, 6: 167-174 [2] Aleksandrov A D. On the theory of mixed volumes. III. Extensions of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat Sb, 1938, 3: 27-46 [3] Bianchi G, Böröczky K J, Colesanti A, Yang D. The Lp-Minkowski problem for −n<p<1. Adv Math, 2019, 341: 493-535 [4] Böröczky K J, Fodor F. The Lp dual Minkowski problem for p>1 and q>0. J Differential Equations, 2019, 266(12): 7980-8033 [5] Böröczky K J, Lutwak E, Yang D, Zhang G. The logarithmic Minkowski problem. J Amer Math Soc, 2013, 26(3): 831-852 [6] Böröczky K J, Lutwak E, Yang D, Zhang G. The dual Minkowski problem for symmetric convex bodies. Adv Math, 2019, 356: Art 106805 [7] Böröczky K J, Lutwak E, Yang D, et al. The Gauss image problem. Comm Pure Appl Math, 2020, 73(7): 1406-1452 [8] Böröczky K J, Trinh H T. The planar Lp-Minkowski problem for 0<p<1. Adv Appl Math, 2017, 87: 58-81 [9] Chen C, Huang Y, Zhao Y. Smooth solutions to the Lp dual Minkowski problem. Math Ann, 2019, 373(3/4): 953-976 [10] Chen S, Li Q, Zhu G. On the Lp Monge-Ampère equation. J Differential Equations, 2017, 263(8): 4997-5011 [11] Cheng S Y, Yau S T. On the regularity of the solution of the n-dimensional Minkowski problem. Comm Pure Appl Math, 1976, 29(5): 495-516 [12] Chou K S, Wang X J. A logarithmic Gauss curvature flow and the Minkowski problem. Ann Inst H Poincaré Anal Non Linéaire, 2000, 17(6): 733-751 [13] Chou K S, Wang X J. The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv Math, 2006, 205(1): 33-83 [14] Fenchel W, Jessen B. Mengenfunktionen und konvexe Körper. Danske Vid Selsk Mat-Fys Medd, 1938, 16: 1-31 [15] Firey W J. p-means of convex bodies. Math Scand, 1962, 10: 17-24 [16] Firey W J. Shapes of worn stones. Mathematika, 1974, 21: 1-11 [17] Gardner R J. Geometric Tomography. New York: Cambridge University Press, 2006 [18] Guan P. Topics in Geometric Fully Nonlinear Equations. Lecture notes of the workshop Monge-Ampére equations. Zhejiang University, Hangzhou, 2002 [19] Guo L, Xi D, Zhao Y. The Lp chord Minkowski problem in a critical interval. Math Ann, 2024, 389(3): 3123-3162 [20] Hu J, Huang Y, Lu J. Boundary regularity of Riesz potential, smooth solution to the chord log-Minkowski problem. arXiv:2304.14220 [21] Huang Y, Lutwak E, Yang D, Zhang G. Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math, 2016, 216(2): 325-388 [22] Huang Y, Lutwak E, Yang D, Zhang G. The Lp-Aleksandrov problem for Lp-integral curvature. J Differential Geom, 2018, 110(1): 1-29 [23] Huang Y, Zhao Y. On the Lp dual Minkowski problem. Adv Math, 2018, 332: 57-84 [24] Hug D, Lutwak E, Yang D, Zhang G. On the Lp Minkowski problem for polytopes. Discrete Comput Geom, 2005, 33(4): 699-715 [25] Jerison D. Prescribing harmonic measure on convex domains. Invent Math, 1991, 105(2): 375-400 [26] Jiang Y, Wu Y. On the 2-dimensional dual Minkowski problem. J Differential Equations, 2017, 263(6): 3230-3243 [27] Li Q R, Sheng W, Wang X J. Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J Eur Math Soc (JEMS), 2020, 22(3): 893-923 [28] Li Y. The Lp chord Minkowski problem for negative p. J Geom Anal, 2024, 34(3): Art 82 [29] Lu J, Wang X J. Rotationally symmetric solutions to the Lp-Minkowski problem. J Differential Equations, 2013, 254(3): 983-1005 [30] Lutwak E. Dual mixed volumes. Pacific J Math, 1975, 58(2): 531-538 [31] Lutwak E. The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38(1): 131-150 [32] Lutwak E. The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas. Adv Math, 1996, 118(2): 244-294 [33] Lutwak E, Xi D, Yang D, Zhang G. Chord measures in integral geometry and their Minkowski problems. Comm Pure Appl Math, 2024, 77(7): 3277-3330 [34] Lutwak E, Yang D, Zhang G. On the Lp-Minkowski problem. Trans Amer Math Soc, 2004, 356(11): 4359-4370 [35] Krylov N V. Nonlinear Elliptic and Parabolic Equations of the Second Order. Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. Mathematics and Its Applications (Soviet Series). Dordrecht: D. Reidel Publishing Co, 1987 [36] Minkowski H. Allgemeine Lehrsätze über die convexen Polyeder. Nachr Ges Wiss Göttingen, 1897, 1897: 198-220 [37] Minkowski H. Volumen und Oberfläche. Math Ann, 1903, 57(4): 447-495 [38] Nirenberg L. The Weyl and Minkowski problems in differential geometry in the large. Comm Pure Appl Math, 1953, 6: 337-394 [39] Ren D. Topics in Integral Geometry. Singapore: World Scientific, 1994 [40] Santaló L A. Integral Geometry and Geometric Probability. Cambridge: Cambridge University Press, 2004 [41] Schneider R. Convex Bodies: the Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014 [42] Urbas J I E. An expansion of convex hypersurfaces. J Differential Geom, 1991, 33(1): 91-125 [43] Xi D, Yang D, Zhang G, Zhao Y. The Lp chord Minkowski problem. Adv Nonlinear Stud, 2023, 23(1): Art 20220041 [44] Zhao Y. The dual Minkowski problem for negative indices. Calc Var Partial Differential Equations, 2017, 56(2): Art 18 [45] Zhao Y. Existence of solutions to the even dual Minkowski problem. J Differential Geom, 2018, 110(3): 543-572 [46] Zhu G. The logarithmic Minkowski problem for polytopes. Adv Math, 2014, 262: 909-931 [47] Zhu G. The Lp Minkowski problem for polytopes for 0<p<1. J Funct Anal, 2015, 269(4): 1070-1094 [48] Zhu G. The centro-affine Minkowski problem for polytopes. J Differential Geom, 2015, 101(1): 159-174 |
[1] | Fan YANG, Congming LI. WEAK-STRONG UNIQUENESS FOR THREE DIMENSIONAL INCOMPRESSIBLE ACTIVE LIQUID CRYSTALS [J]. Acta mathematica scientia,Series B, 2024, 44(4): 1415-1440. |
[2] | Min Zhao, Rong Yuan. THE PERSISTENCE OF SOLUTIONS IN A NONLOCAL PREDATOR-PREY SYSTEM WITH A SHIFTING HABITAT [J]. Acta mathematica scientia,Series B, 2024, 44(3): 1096-1114. |
[3] | Bin Han, Ningan Lai, Andrei Tarfulea. THE GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR A NON-ISOTHERMAL IDEAL GAS SYSTEM [J]. Acta mathematica scientia,Series B, 2024, 44(3): 865-886. |
[4] | Jianfeng ZHOU, Zhong TAN. REGULARITY OF WEAK SOLUTIONS TO A CLASS OF NONLINEAR PROBLEM [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1333-1365. |
[5] | Muhammad Zainul ABIDIN, Jiecheng CHEN. GLOBAL WELL-POSEDNESS FOR FRACTIONAL NAVIER-STOKES EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV-MORREY SPACES [J]. Acta mathematica scientia,Series B, 2021, 41(1): 164-176. |
[6] | Ji LI, Carole ROSIER. PARAMETERS IDENTIFICATION IN A SALTWATER INTRUSION PROBLEM [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1563-1584. |
[7] | Qingquan TANG, Qiao XIN, Chunlai MU. BOUNDEDNESS OF THE HIGHER-DIMENSIONAL QUASILINEAR CHEMOTAXIS SYSTEM WITH GENERALIZED LOGISTIC SOURCE [J]. Acta mathematica scientia,Series B, 2020, 40(3): 713-722. |
[8] | Dong-Ho TSAI, Xiaoliu WANG. ON SOME SIMPLE METHODS TO DERIVE THE HAIRCLIP AND PAPERCLIP SOLUTIONS OF THE CURVE SHORTENING FLOW [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1674-1694. |
[9] | Elhoussine AZROUL, Badr LAHMI, Ahmed YOUSSFI. STRONGLY NONLINEAR VARIATIONAL PARABOLIC EQUATIONS WITH p(x)-GROWTH [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1383-1404. |
[10] | Yi JIANG, Chuan LUO. OPTIMAL CONDITIONS OF GLOBAL EXISTENCE AND BLOW-UP FOR A NONLINEAR PARABOLIC EQUATION [J]. Acta mathematica scientia,Series B, 2016, 36(3): 872-880. |
[11] | Xiaobao ZHU. GRADIENT ESTIMATES AND LIOUVILLE THEOREMS FOR LINEAR AND NONLINEAR PARABOLIC EQUATIONS ON RIEMANNIAN MANIFOLDS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 514-526. |
[12] | M. YOUSEFNEZHAD, S. A. MOHAMMADI. STABILITY OF A PREDATOR-PREY SYSTEM WITH PREY TAXIS IN A GENERAL CLASS OF FUNCTIONAL RESPONSES [J]. Acta mathematica scientia,Series B, 2016, 36(1): 62-72. |
[13] | Pan ZHENG, Chunlai MU, Xuegang HU, Fuchen ZHANG. SECONDARY CRITICAL EXPONENT AND LIFE SPAN FOR A DOUBLY SINGULAR PARABOLIC EQUATION WITH A WEIGHTED SOURCE [J]. Acta mathematica scientia,Series B, 2016, 36(1): 244-256. |
[14] | Haixia LI, Yuzhu HAN, Wenjie GAO. CRITICAL EXTINCTION EXPONENTS FOR POLYTROPIC FILTRATION EQUATIONS WITH NONLOCAL SOURCE AND ABSORPTION [J]. Acta mathematica scientia,Series B, 2015, 35(2): 366-374. |
[15] | Manoj K. YADAV. SOLUTIONS OF A SYSTEM OF FORCED BURGERS EQUATION IN TERMS OF GENERALIZED LAGUERRE POLYNOMIALS [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1461-1472. |
|