[1] Artstein-Avidan S, Giannopoulos A, Milman V D. Asymptotic Geometric Analysis. Part I. Providence, RI: American Mathematical Society, 2015 [2] Ball K M. Logarithmically concave functions and sections of convex sets in Rn. Studia Math, 1988, 88: 69-84 [3] Ball K M, Böröczky K J. Stability of the Prékopa-Leindler inequality. Mathematika, 2010, 56: 339-356 [4] Ball K M, Böröczky K J. Stability of some versions of the Prékopa-Leindler inequality. Monatsh Math, 2011, 163: 1-14 [5] Balogh Z M, Kristály A. Equality in Borell-Brascamp-Lieb inequalities on curved spaces. Adv Math, 2018, 339: 453-494 [6] Bobkov S G, Ledoux M. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom Funct Anal GAFA, 2000, 10: 1028-1052 [7] Bolley F, Gentil I, Guillin A. Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. Annal Probab, 2018, 46: 261-301 [8] Borell C. Convex set functions in d-space. Period Math Hung, 1975, 6: 111-136 [9] Böröczky K J, De A. Stability of the Prékopa-Leindler inequality for log-concave functions Adv Math, 2021, 386: 107810 [10] Böröczky K J, Figalli A, Ramos J P. A quantitative stability result for the Prékopa-Leindler inequality for arbitrary measurable functions. Ann Inst H Poincaré Anal Non Linéaire, 2024, 41: 565-614 [11] Brascamp H J, Lieb E H. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J Funct Anal, 1976, 22: 366-389 [12] Bucur D, Fragalà I. Lower bounds for the Prékopa-Leindler deficit by some distances modulo translations. J Convex Anal, 2014, 21: 289-305 [13] Cordero-Erausquin D. Transport inequalities for log-concave measures, quantitative forms, and applications. Canad J Math, 2017, 69: 481-501 [14] Cordero-Erausquin D, McCann R J, Schmuckenschläger M. Prékopa-Leindler type inequalities on Riemann manifolds, Jacobi fields, and optimal transport. Ann Fac Sci Toulouse Math, 2006, 15: 613-635 [15] Fang N, Hu J, Zhao L. From the Brunn-Minkowski inequality to a class of generalized Poincaré-type inequalities for torsional rigidity. J Geom Anal, 2024, 34: Art 114 [16] Figalli A, Maggi F, Pratelli A. A refined Brunn-Minkowski inequality for convex sets. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 2511-2519 [17] Figalli A, Maggi F, Pratelli A. A mass transportation approach to quantitative isoperimetric inequalities. Invent Math, 2010, 182: 167-211 [18] Gardner R J. The Brunn-Minkowski inequality. Bull Amer Math Soc (NS), 2002, 39: 355-405 [19] Gentil I. From Prékopa-Leindler inequality to modified logarithmic Sobolev inequality. Ann Fac Sci Toulouse Math, 2008, 17: 291-308 [20] Ghilli D, Salani P. Quantitative Borell-Brascamp-Lieb inequalities for power concave functions. J Convex Anal, 2017, 24: 857-888 [21] Gozlan N. Poincaré inequalities and dimension free concentration of measure. Ann Inst Henri Poincaré Probab Stat, 2010, 46: 708-739 [22] Leindler L. On a certain converse of Hölder's inequality II. Acta Sci Math Szeged, 1972, 33: 217-223 [23] Lutwak E. The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38: 131-150 [24] Meyer M, Pajor A. On the Blaschke-Santaló inequality. Arch Math, 1990, 55: 82-93 [25] Prékopa A. Logarithmic concave measures with application to stochastic programming. Acta Sci Math, 1971, 32: 301-316 [26] Qin M, Zhang Z, Luo R, et al. Stability of Borell-Brascamp-Lieb inequality for multiple power concave functions. Axioms, 2024, 13: Art 320 [27] Rossi A, Salani P. Stability for Borell-Brascamp-Lieb inequalities// Klartag B, Milman E. Geometric Aspects of Functional Analysis, 2017: 339-363 [28] Rossi A, Salani P. Stability for a strengthened Borell-Brascamp-Lieb inequality. Appl Anal, 2019, 98: 1773-1784 [29] Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge Univ Press, 2014 |