[1] Hung Y, Joseph V R, Melkote S N. Design and analysis of computer experiments with branching and nested factors. Technometrics, 2009, 51:354-365 [2] Taguchi G. System of Experimental Design. New York:Unipub/Kraus International, 1987 [3] Hedayat A S, Sloane N J A, Stufken J. Orthogonal Arrays:Theory and Applications. New York:Springer, 1999 [4] Phadke M S. Quality Engineering Using Robust Design. Englewood Cliffs:Prentice Hall, 1989 [5] McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21:239-245 [6] Qian P Z G. Sliced Latin hypercube designs. Journal of the American Statistical Association, 2012, 107:393-399 [7] Yang J F, Lin C D, Qian P Z G, et al. Construction of sliced orthogonal Latin hypercube designs. Statistica Sinica, 2013, 23:1117-1130 [8] Huang H Z, Yang J F, Liu M Q. Construction of sliced (nearly) orthogonal Latin hypercube designs. Journal of Complexity, 2014, 30:355-365 [9] Cao R Y, Liu M Q. Construction of second-order orthogonal sliced Latin hypercube designs. Journal of Complexity, 2015, 31:762-772 [10] Yang J Y, Chen H, Lin D K J, et al. Construction of sliced maximin-orthogonal Latin hypercube designs. Statistica Sinica, 2016, 26:589-603 [11] Wang X L, Zhao Y N, Yang J F, et al. Construction of (nearly) orthogonal sliced Latin hypercube designs. Statistics and Probability Letters, 2017, 125:174-180 [12] Chen H, Yang J Y, Lin D K J, et al. Sliced Latin hypercube designs with both branching and nested factors. Statistics and Probability Letters, 2019, 146:124-131 [13] Yang J Y, Liu M Q. Construction of orthogonal and nearly orthogonal Latin hypercube designs from orthogonal designs. Statistica Sinica, 2012, 22:433-442 [14] Qian P Z G, Wu H Q, Wu C F J. Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics, 2008, 50:383-396 [15] Santner T J, Williams B J, Notz W I. The Design and Analysis of Computer Experiments. New York:Springer, 2003 [16] Fang K T, Li R, Sudjianto A. Design and Modeling for Computer Experiments. New York:CRC Press, 2006 [17] Lophaven S N, Nielsen H B, Sondergaard J. A Matlab kriging toolbox DACE. Version 2.5, 2002 [18] Tang B. Orthogonal array-based Latin hypercubes. Journal of the American Statistical Association, 1993, 88:1392-1397 [19] Yin Y H, Lin D K J, Liu M Q. Sliced Latin hypercube designs via orthogonal arrays. Journal of Statistical Planning and Inference, 2014, 149:162-171 [20] Yang X, Chen H, Liu M Q. Resolvable orthogonal array-based uniform sliced Latin hypercube designs. Statistics and Probability Letters, 2014, 93:108-115 |