[1] Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems. Washington: Winston and Sons, 1977
[2] Lavrent'v M M, Romanov V G, Shishat·skiï S P. Ill-posed Problems of Mathematical Physics and Analysis. Providence RI: American Mathematical Society, 1986
[3] Gorenflo R. Funktionentheoretische Bestimmung des Aussenfeldes zu einer zweidimensionalen magnetohy- drostatischen Konguration. Z Angew Math Phys, 1965, 16: 279-290
[4] Colli-Franzone P, Guerri L, Tentoni S, Viganotti C, Baruffi S, Spaggiari S, Taccardi B. A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data. Math Biosci, 1985, 77: 353-396
[5] Johnson C R. Computational and numerical methods for bioelectric field problems. Crit Rev Biomed Eng, 1997, 25: 1-81
[6] Alessandrini G. Stable determination of a crack from boundary measurements. Proc R Soc Edinburgh A, 1993, 123: 497-516
[7] Hadamard J. Lecture on the Cauchy Problem in Linear Partial Differential Equations. New Haven: Yale University Press, 1923
[8] Fu C L, Li H F, Qian Z, Xiong X T. Fourier regularization method for solving a Cauchy problem for the Laplace equation. Inverse Probl Sci Eng, 2008, 16(2): 159-169
[9] Xiong X T, Fu C L. Central difference regularization method for the Cauchy problem of the Laplace's equation. Appl Math Comput, 2006, 181: 675-684
[10] Klibanov M V, Santosa F. A computational quasi-reversibility method for Cauchy problems for Laplace's equation. SIAM J Appl Math, 1991, 51: 1653-1675
[11] Lattès R, Lions J L. The Method of Quasi-reversibility: Applications to Partial Differential Equations. New York: Elsevier, 1969
[12] Qian Z, Fu C L, Li Z P. Two regularization methods for a Cauchy problem for the Laplace equation. J Math Anal Appl, 2008, 338: 479-489
[13] Qian Z, Fu C L, Xiong X T. Fourth-order modified method for the Cauchy problem for the Laplace equation. J Comput Appl Math 2006, 192: 205-218
[14] Ang D D, Nghia N H, Tam N C. Regularized solutions of a Cauchy problem for the Laplace equation in an irregular layer: a three-dimensional model. Acta Math Vietnam, 1998, 23: 65-74
[15] H`ao D N, Lesnic D. The Cauchy problem for Laplace's equation via the conjugate gradient method. IMA J Appl Math, 2000, 65: 199-217
[16] Cheng J, Hon Y C, Wei T, Yamamoto M. Numerical computation of a Cauchy problem for Laplace's equation. ZAMMZ Angew Math Mech, 2001, 81(10): 665-674
[17] Hon Y C, Wei T. Backus-Gilbert algorithm for the Cauchy problem of the Laplace equation. Inverse Prob, 2001, 17: 261-271
[18] Wei T, Hon Y C, Cheng J. Computation for multidimensional Cauchy problem. SIAM J Control Optim, 2003, 42(2): 381-396
[19] Vani C, Avudainayagam A. Regularized solution of the Cauchy problem for the Laplace equation using Meyer wavelets. Math Comput Model, 2002, 36: 1151-1159
[20] Qiu C Y, Fu C L. Wavelets and regularization of the Cauchy problem for the Laplace equation. J Math Anal Appl, 2008, 338: 1440-1447
[21] Li Z P, Fu C L. A mollification method for a Cauchy problem for the Laplace equation. Appl Math Comput, 2011, 217: 9209-9218
[22] Wei T, Zhou D Y. Convergence analysis for the Cauchy problem of Laplace's equation by a regularized method of fundamental solutions. Adv Comput Math, 2010, 33(4): 491-510
[23] Fu C L, Ma Y J, Cheng H, Zhang Y X. The a posteriori Fourier method for solving the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data. Appl Math Model, 2013, 37(14/15): 7764-7777
[24] Carasso A. Determining surface temperature from interior observations. SIAM J Appl Math, 1982, 42: 558-574
[25] Zhao Z Y, Meng Z H. A modified Tikhonov regularization method for a backward heat equation. Inverse Probl Sci Eng, 2011, 19: 1175-1182
[26] Fu C L. Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation. J Comput Appl Math, 2004, 167: 449-463
[27] Feng X L, Fu C L, Cheng H. A regularization method for solving the Cauchy problem for the Helmholtz equation. Appl Math Model, 2011, 35: 3301-3315
[28] Cheng W, Fu C L, Qian Z. A modified Tikhonov regularization method for a spherically symmetric three- dimensional inverse heat conduction problem. Math Comput Simul, 2007, 75: 97-112
[29] Cheng W, Fu C L, Qian Z. Two regularization methods for a spherically symmetric inverse heat conduction problem. Appl Math Model, 2008, 32: 432-442
[30] Yang F, Fu C L. Two regularization methods for identification of the heat source depending only on spatial variable for the heat equation. J Inv Ill-Posed Problems, 2009, 17: 815-830
[31] Yang F, Fu C L, Li X X. Identifying an unknown source in space-fractional diffusion equation. Acta Math Sci, 2014, 34B(4): 1012-1024
[32] Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems. Berlin: Springer-Verlag, 1996 |