[1] Alexandre R, Morimoto Y, Ukai S, et al.Local existence with mild regularity for the Boltzmann equation. Kinet Relat Models, 2013, 6: 1011-1041 [2] Bouchut F.Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions. J Funct Anal, 1993, 111: 239-258 [3] Bouchut F.Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system. J Differential Equations, 1995, 122: 225-238 [4] 1998, 21: 985-1014Carrillo J A, Duan R J, Moussa A. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. 21: 985-1014Carrillo J A, Duan R J, Moussa A. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinet Relat Models, 2011, 4: 227-258 [5] Carrillo J A, Soler J.On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces. Math Methods Appl Sci, 1995, 18: 825-839 [6] Cercignani C, Illner R, Pulvirenti M.The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, 106. New York: Springer-Verlag, 1994 [7] Degond P, Lemou M.Dispersion relations for the linearized Fokker-Planck equation. Arch Ration Mech Anal, 1997, 138: 137-167 [8] Deng D Q.The Landau and non-cutoff Boltzmann equation in union of cubes. J Differential Equations, 2024, 392: 266-305 [9] Deng D Q, Duan R J.Low regularity solutions for the Vlasov-Poisson-Landau/Boltzmann system. Nonlinearity, 2023, 36: 2193-2248 [10] DiPerna R J, Lions P L. On the Fokker-Planck-Boltzmann equation. Comm Math Phys, 1988, 120: 1-23 [11] Duan R J, Liu S Q.Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinet Relat Models, 2013, 6: 687-700 [12] Duan R J, Liu S Q.Time-periodic solutions of the Vlasov-Poisson-Fokker-Planck system. Acta Mathematica Scientia, 2015, 35B: 876-886 [13] Duan R J, Liu S Q, Sakamoto S, Strain R M.Global mild solutions of the Landau and non-cutoff Boltzmann equations. Comm Pure Appl Math, 2021, 74: 932-1020 [14] Duan R J, Fornasier M, Toscani G.A kinetic flocking model with diffusion. Comm Math Phys, 2010, 300: 95-145 [15] Duan R J, Sakamoto S, Ueda Y.An $L^1_k\cap L^p_k$ approach for the non-cutoff Boltzmann equation in $\R^3$. SIAM J Math Anal, 2024, 56: 762-800 [16] Duan R J, Strain R M.Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^3$. Arch Ration Mech Anal, 2011, 199: 291-328 [17] Duan R J, Yang T, Zhao H J.The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case. J Differential Equations, 2012, 252: 6356-6386 [18] Duan R J, Yang T, Zhao H J.The Vlasov-Poisson-Boltzmann system for soft potentials. Mathematical Models and Methods in Applied Sciences, 2013, 23: 979-1028 [19] Esposito R, Guo Y, Marra R.Stability of the front under a Vlasov-Fokker-Planck dynamics. Arch Ration Mech Anal, 2010, 195: 75-116 [20] Gressman P, Strain R.Global classical solutions of the Boltzmann equation without angular cut-off. J Amer Math Soc, 2011, 24: 771-847 [21] Guo Y.The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm Pure Appl Math, 2002, 55: 1104-1135 [22] Guo Y.Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch Ration Mech Anal, 2003, 169: 305-353 [23] Guo Y.The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53: 1081-1094 [24] Guo Y.The Vlasov-Poisson-Laudau system in a periodic box. J Amer Math Soc, 2012, 25: 759-812 [25] Hamdache K, Estimations uniformes des solutions de l'équation de Boltzmann par les méthodes de viscosité artificielle et de diffusion de Fokker-Planck. Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 1986, 302: 187-190 [26] Hwang H J, Jang J.On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete Contin Dyn Syst Ser B, 2013, 18: 681-691 [27] Li H L, Matsumura A.Behaviour of the Fokker-Planck-Boltzmann equation near a Maxwellian. Arch Ration Mech Anal, 2008, 189: 1-44 [28] Liu L Q, Wang H.Global existence and decay of solutions for hard potentials to the Fokker-Planck-Boltzmann equation without cut-off. Commun Pur Appl Anal, 2020, 19: 3113-3136 [29] Liu T P, Yang T, Yu S H.Energy method for Boltzmann equation. Phys D, 2004, 188: 178-192 [30] Ono K, Weckler J.Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions. J Differential Equations, 1992, 99: 59-77 [31] Pulvirenti M, Simeoni C.$L^\infty$-estimates for the Vlasov-Poisson-Fokker-Planck equation. Math Methods Appl Sci, 2000, 23: 923-935 [32] Victory H D.On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck [33] systems. J Math Anal Appl, 1991, 160: 525-555 [34] Victory H D, O'Dwyer B P. On classical solutions of Vlasov-Poisson Fokker-Planck systems. Indiana Univ Math J, 1990, 39: 105-156 [35] Wang H. Global existence and decay of solutions for soft potentials to the Fokker-Planck-Boltzmann equation without cut-off. J Math Anal Appl, 2020, 486: Art 123947 [36] Wang X L.Global existence and long-time behavior of solutions to the Vlasov-Poisson-Fokker-Planck system. Acta Applicandae Mathematicae, 2020, 170: 853-881 [37] Wang X L, Shi H P.Decay and stability of solutions to the Fokker-Planck-Boltzmann equation in $\mathbb{R}^3$. Applicable Analysis, 2018, 11: 1933-1959 [38] Xiong L J, Wang T, Wang L S.Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinet Relat Models, 2014, 1: 169-194 [39] Zhong M Y, Li H L.Long time behavior of the Fokker-Planck-Boltzmann equation with soft potential. Quart Appl Math, 2012, 70: 721-742 [40] Zhong M Y.Green's function and the pointwise behaviors of the Vlasov-Poisson-Fokker-Planck system. Acta Mathematica Scientia, 2023, 43B: 205-236 [41] Zhong M Y, Li H L.Long time behavior of the Fokker-Planck-Boltzmann equation. Acta Math Appl Sin Engl Ser, 2014, 30: 533-554 |