数学物理学报(英文版) ›› 2024, Vol. 44 ›› Issue (5): 1721-1734.doi: 10.1007/s10473-024-0505-4

• • 上一篇    下一篇

APPROXIMATION PROBLEMS ON THE SMOOTHNESS CLASSES*

Yongping LIU, Man LU   

  1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
  • 收稿日期:2023-03-06 修回日期:2024-06-11 出版日期:2024-10-25 发布日期:2024-10-22
  • 通讯作者: †Man LU ,E-mail,: luman29@163.com
  • 作者简介:Yongping LIU , E-mail,: ypliu@bnu.edu.cn
  • 基金资助:
    National Natural Science Foundation of China (11871006).

APPROXIMATION PROBLEMS ON THE SMOOTHNESS CLASSES*

Yongping LIU, Man LU   

  1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
  • Received:2023-03-06 Revised:2024-06-11 Online:2024-10-25 Published:2024-10-22
  • Contact: †Man LU ,E-mail,: luman29@163.com
  • About author:Yongping LIU , E-mail,: ypliu@bnu.edu.cn
  • Supported by:
    National Natural Science Foundation of China (11871006).

摘要: This paper investigates the relative Kolmogorov $n$-widths of $2\pi$-periodic smooth classes in $\widetilde{L}_{q}$. We estimate the relative widths of $\widetilde{W}^{r} H_{p}^{\omega}$ and its generalized class $K_{p}H^{\omega}(P_{r})$, where $K_{p}H^{\omega}(P_{r})$ is defined by a self-conjugate differential operator $P_{r}(D)$ induced by $P_{r}(t):= t^{\sigma} \Pi_{j=1}^{l}(t^{2}- t_{j}^{2}),~t_{j} > 0,~j=1, 2 ,\cdots, l,~l \geq 1,~\sigma \geq 1,~r=2l+\sigma .$ Also, the modulus of continuity of the $r$-th derivative, or $r$-th self-conjugate differential, does not exceed a given modulus of continuity $\omega$. Then we obtain the asymptotic results, especially for the case $p=\infty , 1\leq q \leq \infty$.

关键词: relative width, self-conjugate differential operator, asymptotic estimate

Abstract: This paper investigates the relative Kolmogorov $n$-widths of $2\pi$-periodic smooth classes in $\widetilde{L}_{q}$. We estimate the relative widths of $\widetilde{W}^{r} H_{p}^{\omega}$ and its generalized class $K_{p}H^{\omega}(P_{r})$, where $K_{p}H^{\omega}(P_{r})$ is defined by a self-conjugate differential operator $P_{r}(D)$ induced by $P_{r}(t):= t^{\sigma} \Pi_{j=1}^{l}(t^{2}- t_{j}^{2}),~t_{j} > 0,~j=1, 2 ,\cdots, l,~l \geq 1,~\sigma \geq 1,~r=2l+\sigma .$ Also, the modulus of continuity of the $r$-th derivative, or $r$-th self-conjugate differential, does not exceed a given modulus of continuity $\omega$. Then we obtain the asymptotic results, especially for the case $p=\infty , 1\leq q \leq \infty$.

Key words: relative width, self-conjugate differential operator, asymptotic estimate

中图分类号: 

  • 41A30