[1] Widder D V, Analytic solutions of the heat equation. Duke Math J, 1962, 29:497-503 [2] Zhang Q S. A note on time analyticity for ancient solutions of the heat equation. Proc Amer Math Soc, 2020, 148(4):1665-1670 [3] Dong H J, Zhang Q S. Time analyticity for the heat equation and Navier-Stokes equations. J Funct Anal, 2020, 279(4):108563, 15pp [4] Masuda K, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation. Proc Japan Acad, 1967, 43:827-832 [5] Kinderlehrer D, Nirenberg L. Analyticity at the boundary of solutions of nonlinear second-order parabolic equations. Comm Pure Appl Math, 1978, 31(3):283-338 [6] Komatsu G. Global analyticity up to the boundary of solutions of the Navier-Stokes equation. Comm Pure Appl Math, 1980, 33(4):545-566 [7] Giga Y. Time and spatial analyticity of solutions of the Navier-Stokes equations. Comm Partial Differential Equations, 1983, 8(8):929-948 [8] Escauriaza L, Montaner S, Zhang C. Analyticity of solutions to parabolic evolutions and applications. SIAM J Math Anal, 2017, 49(5):4064-4092 [9] Han F W, Hua B B, Wang L L. Time analyticity of solutions to the heat equation on graphs. Proc Amer Math Soc, 2021, 149(6):2279-2290 [10] Hamilton R. The formation of singularities in the Ricci flow, Surveys in Differential Geometry. Boston:International Press, 1995, 2:7-136 [11] Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159 [12] Perelman G. Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109 [13] Perelman G. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245 [14] Cao H D. Recent progress on Ricci solitons, Recent Advances in Geometric Analysis//Lee Y -I, Lin C -S, Tsui M -P, Advanced Lectures in Mathematics (ALM). Somerville:International Press, 2010, 11:1-38 [15] Carrillo J, Ni L. Sharp logarithmic Sobolev inequalities on gradient solitons and applications. Comm Anal Geom, 2009, 17(4):721-753 [16] Chen B L. Strong uniqueness of the Ricci flow. J Diff Geom, 2009, 82(2):363-382 [17] Pigola S, Rimoldi M, Setti A G. Remarks on non-compact gradient Ricci solitons. Math Z, 2011, 268(3/8):777-790 [18] Cao H D, Zhou D T. On complete gradient shrinking Ricci solitons. J Diff Geom, 2010, 85(2):175-186 [19] Chow B, Chu S C, Glickenstein D, et al. The Ricci flow:techniques and applications, part IV:long-time solutions and related topics. Mathematical Surveys and Monographs. Vol 206. Providence, RI:American Mathematical Society, 2015 [20] Munteanu O. The volume growth of complete gradient shrinking Ricci solitons. arXiv:0904.0798v2 [21] Munteanu O, Wang J P, Geometry of manifolds with densities. Adv Math, 2014, 259:269-305 [22] Haslhofer R, Müller R. A compactness theorem for complete Ricci shrinkers. Geom Funct Anal, 2011, 21(5):1091-1116 [23] Li Y, Wang B. Heat kernel on Ricci shrinkers. Calc Var Partial Differential Equations, 2020, 59(6):Art 194 [24] Zhang Q S. Sobolev inequalities, heat kernels under Ricci flow, and the Poincaré conjecture. Boca Raton, FL:CRC Press, 2011 [25] Wu J Y, Wu P. Heat kernels on smooth metric measure spaces with nonnegative curvature. Math Ann, 2015, 362(3/8):717-742 |