[1] Anderson R M, May R M. Population biology of infectious diseases (part I). Nature, 1979, 280: 361-367
[2] Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics (part I). Proc R Soc Lond Ser A, 1927, 115: 700-721
[3] Beretta E, Hara T, Ma W, Takeuchi Y. Global asymptotic stability of an SIR epidemic model with dis- tributed time delay. Nonlinear Anal, 2001, 47: 4107-4115
[4] Guo H B, Li M Y, Shuai Z S. Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can Appl Math Q, 2006, 14: 259-284
[5] Li M Y, Shuai Z S. Global-stability problem for coupled systems of differential equations on networks. J Differential Equations, 2010, 248: 1-20
[6] Meng X Z, Chen L S. The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Appl Math Comput, 2008, 197: 528-597
[7] Roy M, Holt R D. Effects of predation on host-Cpathogen dynamics in SIR models. Theor Popul Biol, 2008, 73: 319-331
[8] Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population size. J Math Biol, 1992, 30: 693-716
[9] Anderson R M, May R M. Infectious Diseases in Humans: Dynamics and Control. Oxford: Oxford Univer- sity Press, 1991
[10] Hethcote H W. The mathematics of infectious diseases. SIAM Rev, 2000, 42: 599-653
[11] Capasso V, Serio G. A generalisation of the Kermack-McKendrick deterministic epidemic model. Math Biosci, 1978, 42: 43-61
[12] Brown G C, Hasibuan R. Conidial discharge and transmission efficiency of Neozygites floridana, an ento- mopathogenic fungus infecting two-spotted spider mites under laboratory conditions. J Invertebr Pathol, 1995, 65: 10-16
[13] Yang Q S, Jiang D Q, Shi N Z, Ji C Y. The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J Math Anal Appl, 2012, 388: 248-271
[14] Rudnicki R. Long-time behaviour of a stochastic prey-predator model. Stochastic Process Appl, 2003, 108: 93-107
[15] Rudnicki R, Pichór K. Influence of stochastic perturbation on prey-predator systems. Math Biosci, 2007, 206: 108-119
[16] Bell D R. The Malliavin calculus. New York: Dover Publications, 2006
[17] Aida S, Kusuoka S, Strook D. On the support of Wiener functionals//Elworthy K D, Ikeda N. Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotic. Pitman Research Notes in Math Series Longman Scient Tech, 1993: 3-34
[18] Arous G B, Léandre R. Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Probab Theory Relat Fields, 1991, 90: 377-402
[19] Stroock D W, Varadhan S R S. On the support of diffusion processes with applications to the strong maximum principle//Proc Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. III. Berkeley: University of California Press, 1972: 333-360
[20] Pichór K, Rudnicki R. Stability of Markov semigroups and applications to parabolic systems. J Math Anal Appl, 1997, 215: 56-74 |