[1] Ablowitz M J, Musslimani Z H. Integrable nonlocal nonlinear Schrödinger equation. Phys Rev Lett, 2013, 110(6):064105 [2] Ablowitz M J, Musslimani Z H. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity, 2016, 29(3):915-946 [3] Ablowitz M J, Luo X D, Musslimani Z H. Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J Math Phys, 2018, 59(1):011501 [4] Ablowitz M J, Feng B F, Luo X D, Musslimani Z H. General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity, 2018, 31(12):5385 [5] Yang J. General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys Lett A, 2019, 383(4):328-337 [6] Ma W X. Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations. Appl Math Lett, 2020, 102:106161 [7] Gürses M, Pekcan A. Nonlocal nonlinear Schrödinger equations and their soliton solutions. J Math Phys, 2018, 59(5):051501 [8] Ma L Y, Zhu Z N. Nonlocal nonlinear Schrödinger equation and its discrete version:soliton solutions and gauge equivalence. J Math Phys, 2016, 57(8):083507 [9] Vinayagam P S, Radha R, Al Khawaja U, Ling L. New classes of solutions in the coupled PT symmetric nonlocal nonlinear Schrödinger equations with four wave mixing. Commun Nonlinear Sci Numer Simul, 2018, 59:387-395 [10] Yang Y Q, Suzuki T, Cheng X P. Darbourx transformations and exact solutions for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Appl Math Lett, 2020, 99:105998 [11] Ablowitz M J, Musslimani Z H. Integrable nonlocal nonlinear equations. Stud Appl Math, 2017, 139(1):7-59 [12] Ji J L, Zhu Z N. Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J Math Anal Appl, 2017, 453(2):973-984 [13] Gürses M, Pekcan A. Nonlocal modified KdV equations and their soliton solutions by Hirota method. Commun Nonlinear Sci Numer Simul, 2019, 67:427-448 [14] Fokas A S. Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity, 2016, 29(2):319-324 [15] Song C Q, Xiao D M, Zhu Z N. Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation. Commun Nonlinear Sci Numer Simul, 2017, 45:13-28 [16] Ma W X. Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations. Proc Amer Math Soc, 2021, 149(1):251-263 [17] Novikov S P, Manakov S V, Pitaevskii L P, Zakharov V E. Theory of Solitons:the Inverse Scattering Method. New York:Consultants Bureau, 1984 [18] Ma W X. The inverse scattering transform and soliton solutions of a combined modified Korteweg-de Vries equation. J Math Anal Appl, 2019, 471(1/2):796-811 [19] Ma W X, Zhou R G. Adjoint symmetry constraints of multicomponent AKNS equations. Chin Ann Math Ser B, 2002, 23(3):373-384 [20] Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53(4):249-315 [21] Tu G Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J Phys A Math Gen, 1989, 22(13):2375-2392 [22] Ma W X, Chen M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J Phys A Math Gen, 2006, 39(34):10787-10801 [23] Ma W X, Zhou R Z. Adjoint symmetry constraints leading to binary nonlinearization. J Nonlinear Math Phys, 2002, 9(Suppl. 1):106-126 [24] Ma W X. Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math Meth Appl Sci, 2019, 42(4):1099-1113 [25] Gakhov F D. Boundary Value Problems. London:Elsevier Science, 2014 [26] Kawata T. Riemann spectral method for the nonlinear evolution equation//Advances in Nonlinear Waves Vol I, Res Notes in Math 95. Boston, MA:Pitman, 1984:210-225 [27] Kamvissis S, McLaughlin K D T-R, Miller P D. Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Princeton:Princeton University Press, 2004 [28] Ma W X, Zhou Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J Differential Equations, 2018, 264(4):2633-2659 [29] Ma W X. Lump and interaction solutions to linear PDEs in 2+1 dimensions via symbolic computation. Mod Phys Lett B, 2019, 33(36):1950457 [30] Ma W X, Zhang L Q. Lump solutions with higher-order rational dispersion relations. Pramana-J Phys, 2020, 94:43 [31] Zhang R G, Yang L G, Liu Q S, Yin X J. Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography. Appl Math Comput, 2019, 346:666-679 [32] Ma W X. Long-time asymptotics of a three-component coupled mKdV system. Mathematics, 2019, 7(7):573 [33] Rybalko Y, Shepelsky D. Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. J Math Phys, 2019, 60(3):031504 [34] Ma W X. Long-time asymptotics of a three-component coupled nonlinear Schrödinger system. J Geom Phys, 2020, 153:103669 [35] Gesztesy F, Holden H. Soliton Equations and Their Algebro-geometric Solutions:(1+1)-Dimensional Continuous Models. Cambridge:Cambridge University Press, 2003 [36] Ma W X. Trigonal curves and algebro-geometric solutions to soliton hierarchies I, II. Proc Roy Soc A, 2017, 473(2203):20170232, 20170233 [37] Boiti M, Leon J J P, Martina L, Pempinelli F. Scattering of localized solitons in the plane. Phys Lett A, 1988, 132(8/9):432-439 [38] Hietarinta J. One-dromion solutions for generic classes of equations. Phys Lett A, 1990, 149(2/3):113-118 |